mbcp/ja/api/mp_math/equation.html

89 lines
56 KiB
HTML
Raw Normal View History

<!DOCTYPE html>
<html lang="ja-JP" dir="ltr">
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width,initial-scale=1">
<title>mbcp.mp_math.equation | MBCP ドキュメント</title>
<meta name="description" content="MBCP ライブラリ ドキュメント">
<meta name="generator" content="VitePress v1.3.4">
<link rel="preload stylesheet" href="/assets/style.OKdX1nxj.css" as="style">
<script type="module" src="/assets/app.DB1cC_Qh.js"></script>
<link rel="modulepreload" href="/assets/chunks/theme.D-Utut8Q.js">
<link rel="modulepreload" href="/assets/chunks/framework.DpC1ZpOZ.js">
<link rel="modulepreload" href="/assets/ja_api_mp_math_equation.md.BR_cjYxP.lean.js">
<link rel="icon" type="image/svg+xml" href="/mbcp-logo.svg">
<link rel="stylesheet" href="https://fonts.font.im/css?family=Cousine:400,400i,700,700i|Poppins:100,100i,200,200i,300,300i,400,400i,500,500i,600,600i,700,700i,800,800i,900,900i">
<script id="check-dark-mode">(()=>{const e=localStorage.getItem("vitepress-theme-appearance")||"auto",a=window.matchMedia("(prefers-color-scheme: dark)").matches;(!e||e==="auto"?a:e==="dark")&&document.documentElement.classList.add("dark")})();</script>
<script id="check-mac-os">document.documentElement.classList.toggle("mac",/Mac|iPhone|iPod|iPad/i.test(navigator.platform));</script>
</head>
<body>
<div id="app"><div class="Layout" data-v-3b4648ff><!--[--><!--]--><!--[--><span tabindex="-1" data-v-e813112c></span><a href="#VPContent" class="VPSkipLink visually-hidden" data-v-e813112c> Skip to content </a><!--]--><!----><header class="VPNav" data-v-3b4648ff data-v-e823d444><div class="VPNavBar has-sidebar top" data-v-e823d444 data-v-da0688be><div class="wrapper" data-v-da0688be><div class="container" data-v-da0688be><div class="title" data-v-da0688be><div class="VPNavBarTitle has-sidebar" data-v-da0688be data-v-606a7e0f><a class="title" href="/ja/" data-v-606a7e0f><!--[--><!--]--><!--[--><img class="VPImage logo" src="/mbcp-logo.svg" alt data-v-cc63e071><!--]--><span data-v-606a7e0f>MBCP ドキュメント</span><!--[--><!--]--></a></div></div><div class="content" data-v-da0688be><div class="content-body" data-v-da0688be><!--[--><!--]--><div class="VPNavBarSearch search" data-v-da0688be><!--[--><!----><div id="local-search"><button type="button" class="DocSearch DocSearch-Button" aria-label="検索を開く"><span class="DocSearch-Button-Container"><span class="vp-icon DocSearch-Search-Icon"></span><span class="DocSearch-Button-Placeholder">検索</span></span><span class="DocSearch-Button-Keys"><kbd class="DocSearch-Button-Key"></kbd><kbd class="DocSearch-Button-Key">K</kbd></span></button></div><!--]--></div><nav aria-labelledby="main-nav-aria-label" class="VPNavBarMenu menu" data-v-da0688be data-v-bf53b681><span id="main-nav-aria-label" class="visually-hidden" data-v-bf53b681> Main Navigation </span><!--[--><!--[--><a class="VPLink link VPNavBarMenuLink" href="/ja/guide/" tabindex="0" data-v-bf53b681 data-v-9a0da802><!--[--><span data-v-9a0da802>スタート</span><!--]--></a><!--]--><!--[--><a class="VPLink link VPNavBarMenuLink" href="/ja/refer.html" tabindex="0" data-v-bf53b681 data-v-9a0da802><!--[--><span data-v-9a0da802>リファレンス</span><!--]--></a><!--]--><!--[--><a class="VPLink link VPNavBarMenuLink" href="/ja/api/" tabindex="0" data-v-bf53b681 data-v-9a0da802><!--[--><span data-v-9a0da802>APIリファレンス</span><!--]--></a><!--]--><!--[--><a class="VPLink link VPNavBarMenuLink" href="/ja/demo/" tabindex="0" data-v-bf53b681 data-v-9a0da802><!--[--><span data-v-9a0da802>インスタンス</span><!--]--></a><!--]--><!--]--></nav><div class="VPFlyout VPNavBarTranslations translations" data-v-da0688be data-v-912817b1 data-v-00660109><button type="button" class="button" aria-haspopup="true" aria-expanded="false" aria-label="Change language" data-v-00660109><span class="text" data-v-00660109><span class="vpi-languages option-icon" data-v-00660109></span><!----><span class="vpi-chevron-down text-icon" data-v-00660109></span></span></button><div class="menu" data-v-00660109><div class="VPMenu" data-v-00660109 data-v-809b8af7><!----><!--[--><!--[--><div class="items" data-v-912817b1><p class="title" data-v-912817b1>日本語</p><!--[--><div class="VPMenuLink" data-v-912817b1 data-v-25a54821><a class="VPLink link" href="/api/mp_math/equation.html" data-v-25a54821><!--[-->简体中文<!--]--></a></div><div class="VPMenuLink" data-v-912817b1 data-v-25a54821><a class="VPLink link" href="/en/api/mp_math/equation.html" data-v-25a54821><!--[-->English<!--]--></a></div><div class="VPMenuLink" data-v-912817b1 data-v-25a54821><a class="VPLink link" href="/zht/api/mp_math/equation.html" data-v-25a54821><!--[-->繁體中文<!--]--></a></div><!--]--></div><!--]--><!--]--></div></div></div><div class="VPNavBarAppearance appearance" data-v-da0688be data-v-864d2abc><button class="VPSwitch VPSwitchAppearance" type="button" role="switch" title="Switch to dark theme" aria-checked="false" data-v-864d2abc data-v-3125216b data-v-846fe538><span class="check" data-v-846fe538><span class="icon" data-v-846fe538><!--[--><span class="vpi-sun sun" data-v-3125216b></span><span class="vpi-moon moon" data-v-3125216b></span><!--]--></span></span></button></div><div class="VPSocialLinks VPNavBarSocialLinks social-links" data-v-da0688be data-v-2c606308 data-v-100434c4><!--[--><a class="VPSocialLink no-icon" href="https://github.c
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> &quot;&quot;&quot;</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> 曲线方程。</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> Args:</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> x_func ([`OneVarFunc`](./mp_math_typing#var-onevarfunc)): x函数</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> y_func ([`OneVarFunc`](./mp_math_typing#var-onevarfunc)): y函数</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> z_func ([`OneVarFunc`](./mp_math_typing#var-onevarfunc)): z函数</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> &quot;&quot;&quot;</span></span>
<span class="line"><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.x_func </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> x_func</span></span>
<span class="line"><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.y_func </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> y_func</span></span>
<span class="line"><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.z_func </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> z_func</span></span></code></pre></div></details><h4 id="method-call-self-t-var-point3-tuple-point3" tabindex="-1"><em><strong>method</strong></em> <code>__call__(self, *t: Var) -&gt; Point3 | tuple[Point3, ...]</code> <a class="header-anchor" href="#method-call-self-t-var-point3-tuple-point3" aria-label="Permalink to &quot;***method*** `__call__(self, *t: Var) -&gt; Point3 | tuple[Point3, ...]`&quot;"></a></h4><p><strong>説明</strong>: 计算曲线上的点。</p><p><strong>引数</strong>:</p><blockquote><ul><li>*t:</li><li>参数:</li></ul></blockquote><p><strong>戻り値</strong>: 目标点</p><details><summary><b>ソースコード</b> または <a href="https://github.com/snowykami/mbcp/tree/main/mbcp/mp_math/equation.py#L24" target="_blank">GitHubで表示</a></summary><div class="language-python vp-adaptive-theme"><button title="Copy Code" class="copy"></button><span class="lang">python</span><pre class="shiki shiki-themes github-light github-dark vp-code" tabindex="0"><code><span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">def</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> __call__</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(self, </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">*</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">t: Var) -&gt; Point3 </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">|</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> tuple[Point3, </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">...</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">]:</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> &quot;&quot;&quot;</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> 计算曲线上的点。</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> Args:</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> *t:</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> 参数</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> Returns:</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> 目标点</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> &quot;&quot;&quot;</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> if</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> len</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(t) </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">==</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> 1</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> Point3(</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.x_func(t[</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">0</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">]), </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.y_func(t[</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">0</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">]), </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.z_func(t[</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">0</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">]))</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> else</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> tuple</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">([Point3(x, y, z) </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">for</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> x, y, z </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">in</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> zip</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.x_func(t), </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.y_func(t), </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.z_func(t))])</span></span></code></pre></div></details><h3 id="func-get-partial-derivative-func-func-multivarsfunc-var-int-tuple-int-epsilon-number-epsilon-multivarsfunc" tabindex="-1"><em><strong>func</strong></em> <code>get_partial_derivative_func(func: MultiVarsFunc, var: int | tuple[int, ...], epsilon: Number = EPSILON) -&gt; MultiVarsFunc</code> <a class="header-anchor" href="#func-get-partial-derivative-func-func-multivarsfunc-var-int-tuple-int-epsilon-number-epsilon-multivarsfunc" aria-label="Permalink to &quot;***func*** `get_partial_derivative_func(func: MultiVarsFunc, var: int | tuple[int, ...], epsilon: Number = EPSILON) -&gt; MultiVarsFunc`&quot;"></a></h3><p><strong>説明</strong>: 求N元函数一阶偏导函数。这玩意不太稳定慎用。</p><div class="warning custom-block github-alert"><p class="custom-block-title">WARNING</p><p>目前数学界对于一个函数的导函数并没有通解的说法,因此该函数的稳定性有待提升</p></div><p><strong>引数</strong>:</p><blockquote><ul><li>func (<a href="./mp_math_typing.html#var-multivarsfunc"><code>MultiVarsFunc</code></a>): N元函数</li><li>var: 变量位置,可为整数(一阶偏导)或整数元组(高阶偏导)</li><li>epsilon: 偏移量</li></ul></blockquote><p><strong>戻り値</strong>: 偏导函数</p><p><strong>例外</strong>:</p><blockquote><ul><li>ValueError 无效变量类型</li></ul></blockquote><details><summary><b>ソースコード</b> または <a href="https://github.com/snowykami/mbcp/tree/main/mbcp/mp_math/equation.py#L42" target="_blank">GitHubで表示</a></summary><div class="language-python vp-adaptive-theme"><button title="Copy Code" class="copy"></button><span class="lang">python</span><pre class="shiki shiki-themes github-light github-dark vp-code" tabindex="0"><code><span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">def</span><span style="--shiki-light:#6F42C1;--shiki-dark:#B392F0;"> get_partial_derivative_func</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(func: MultiVarsFunc, var: </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">int</span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> |</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> tuple[</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">int</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">, </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">...</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">], epsilon: Number</span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">EPSILON</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">) -&gt; MultiVarsFunc:</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> &quot;&quot;&quot;</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> 求N元函数一阶偏导函数。这玩意不太稳定慎用。</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> &gt; [!warning]</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> &gt; 目前数学界对于一个函数的导函数并没有通解的说法,因此该函数的稳定性有待提升</span></span>
<span class="line"></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> Args:</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> func ([`MultiVarsFunc`](./mp_math_typing#var-multivarsfunc)): N元函数</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> var: 变量位置,可为整数(一阶偏导)或整数元组(高阶偏导)</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> epsilon: 偏移量</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> Returns:</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> 偏导函数</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> Raises:</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> ValueError: 无效变量类型</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> &quot;&quot;&quot;</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> if</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> isinstance</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(var, </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">int</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">):</span></span>
<span class="line"></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> def</span><span style="--shiki-light:#6F42C1;--shiki-dark:#B392F0;"> partial_derivative_func</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(</span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">*</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">args: Var) -&gt; Var:</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> &quot;&quot;&quot;@litedoc-hide&quot;&quot;&quot;</span></span>
<span class="line"><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> args_list_plus </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> list</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(args)</span></span>
<span class="line"><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> args_list_plus[var] </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">+=</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> epsilon</span></span>
<span class="line"><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> args_list_minus </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> list</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(args)</span></span>
<span class="line"><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> args_list_minus[var] </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">-=</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> epsilon</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> (func(</span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">*</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">args_list_plus) </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">-</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> func(</span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">*</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">args_list_minus)) </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">/</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> (</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">2</span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> *</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> epsilon)</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> partial_derivative_func</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> elif</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> isinstance</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(var, </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">tuple</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">):</span></span>
<span class="line"></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> def</span><span style="--shiki-light:#6F42C1;--shiki-dark:#B392F0;"> high_order_partial_derivative_func</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(</span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">*</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">args: Var) -&gt; Var:</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> &quot;&quot;&quot;</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> @litedoc-hide</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> 求高阶偏导函数</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> Args:</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> *args: 参数</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> Returns:</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> 高阶偏导数值</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> &quot;&quot;&quot;</span></span>
<span class="line"><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> result_func </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> func</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> for</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> v </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">in</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> var:</span></span>
<span class="line"><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> result_func </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> get_partial_derivative_func(result_func, v, epsilon)</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> result_func(</span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">*</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">args)</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> high_order_partial_derivative_func</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> else</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> raise</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> ValueError</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(</span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">&#39;Invalid var type&#39;</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">)</span></span></code></pre></div></details></div></div></main><footer class="VPDocFooter" data-v-01c90815 data-v-28deee4a><!--[--><!--]--><div class="edit-info" data-v-28deee4a><div class="edit-link" data-v-28deee4a><a class="VPLink link vp-external-link-icon no-icon edit-link-button" href="https://github.com/snowykami/mbcp/tree/main/mbcp//mp_math/equation.py" target="_blank" rel="noreferrer" data-v-28deee4a><!--[--><span class="vpi-square-pen edit-link-icon" data-v-28deee4a></span> このページをGitHubで編集する<!--]--></a></div><!----></div><nav class="prev-next" aria-labelledby="doc-footer-aria-label" data-v-28deee4a><span class="visually-hidden" id="doc-footer-aria-label" data-v-28deee4a>Pager</span><div class="pager" data-v-28deee4a><a class="VPLink link pager-link prev" href="/ja/api/mp_math/const.html" data-v-28deee4a><!--[--><span class="desc" data-v-28deee4a>前のページ</span><span class="title" data-v-28deee4a>mbcp.mp_math.const</span><!--]--></a></div><div class="pager" data-v-28deee4a><a class="VPLink link pager-link next" href="/ja/api/mp_math/function.html" data-v-28deee4a><!--[--><span class="desc" data-v-28deee4a>次のページ</span><span class="title" data-v-28deee4a>mbcp.mp_math.function</span><!--]--></a></div></nav></footer><!--[--><!--]--></div></div></div><!--[--><!--]--></div></div><footer class="VPFooter has-sidebar" data-v-3b4648ff data-v-d69bcf5d><div class="container" data-v-d69bcf5d><p class="message" data-v-d69bcf5d><a href="https://vitepress.dev/">VitePress</a> で構築されたドキュメント | <a href="https://github.com/LiteyukiStudio/litedoc">litedoc</a> によって生成されたAPIリファレンス</p><p class="copyright" data-v-d69bcf5d>Copyright (C) 2020-2024 SnowyKami. All Rights Reserved</p></div></footer><!--[--><!--]--></div></div>
<script>window.__VP_HASH_MAP__=JSON.parse("{\"api_index.md\":\"YS-zqWwM\",\"api_mp_math_angle.md\":\"CThQB5nq\",\"api_mp_math_const.md\":\"DqjQQ6Ym\",\"api_mp_math_equation.md\":\"C1YMGsIR\",\"api_mp_math_function.md\":\"C0P_-kol\",\"api_mp_math_index.md\":\"yEj9pzOD\",\"api_mp_math_line.md\":\"Okmn0BTW\",\"api_mp_math_mp_math_typing.md\":\"bdiOSvFy\",\"api_mp_math_plane.md\":\"Dl-FdXx3\",\"api_mp_math_point.md\":\"xU6HjeL2\",\"api_mp_math_segment.md\":\"BqloNjdD\",\"api_mp_math_utils.md\":\"CGBZjr3t\",\"api_mp_math_vector.md\":\"B443ftAV\",\"api_particle_index.md\":\"VxgsHiZa\",\"api_presets_index.md\":\"BEZBx6Gj\",\"api_presets_model_index.md\":\"CzrZX1Li\",\"demo_best-practice.md\":\"CmYjfrxd\",\"demo_index.md\":\"CVAdlaFI\",\"en_api_index.md\":\"BrJlad-k\",\"en_api_mp_math_angle.md\":\"BvzeTdtj\",\"en_api_mp_math_const.md\":\"CrUt_3FV\",\"en_api_mp_math_equation.md\":\"CHBtH4v6\",\"en_api_mp_math_function.md\":\"D68bTyed\",\"en_api_mp_math_index.md\":\"D331As7i\",\"en_api_mp_math_line.md\":\"B69kHoPc\",\"en_api_mp_math_mp_math_typing.md\":\"xRGJGUMm\",\"en_api_mp_math_plane.md\":\"BdKgRumw\",\"en_api_mp_math_point.md\":\"BeT2oqIN\",\"en_api_mp_math_segment.md\":\"DbFvInHk\",\"en_api_mp_math_utils.md\":\"CYq8hncD\",\"en_api_mp_math_vector.md\":\"CPGkZzwr\",\"en_api_particle_index.md\":\"ZKByd_x0\",\"en_api_presets_index.md\":\"BhoZyGSV\",\"en_api_presets_model_index.md\":\"BM4zzWd9\",\"en_demo_best-practice.md\":\"CmtY105n\",\"en_guide_index.md\":\"C3kI8f8A\",\"en_index.md\":\"Cc-Nt9Ot\",\"en_refer_index.md\":\"Cq6GWi0V\",\"guide_index.md\":\"CJOqvlSE\",\"index.md\":\"WVpbC1C1\",\"ja_api_index.md\":\"6u5f7W7q\",\"ja_api_mp_math_angle.md\":\"CbTFNFpP\",\"ja_api_mp_math_const.md\":\"HrVLdLVW\",\"ja_api_mp_math_equation.md\":\"BR_cjYxP\",\"ja_api_mp_math_function.md\":\"CeNPnpri\",\"ja_api_mp_math_index.md\":\"BVYYBcgX\",\"ja_api_mp_math_line.md\":\"CmVmq6PC\",\"ja_api_mp_math_mp_math_typing.md\":\"BnSHEEFC\",\"ja_api_mp_math_plane.md\":\"D7v3q_U8\",\"ja_api_mp_math_point.md\":\"BqC8JgjG\",\"ja_api_mp_math_segment.md\":\"vi1FH0--\",\"ja_api_mp_math_utils.md\":\"DhPmcvK-\",\"ja_api_mp_math_vector.md\":\"B7oDy-SU\",\"ja_api_particle_index.md\":\"ighey3JD\",\"ja_api_presets_index.md\":\"Bow22HNO\",\"ja_api_presets_model_index.md\":\"C-uCqjXi\",\"ja_demo_best-practice.md\":\"CBHiF6ec\",\"ja_guide_index.md\":\"w1Tf2Adm\",\"ja_index.md\":\"BvjV8RIJ\",\"ja_refer_index.md\":\"DamUscs8\",\"refer_function_curry.md\":\"D_oqRDd3\",\"refer_function_function.md\":\"Bi_82lIJ\",\"refer_index.md\":\"yFZW0kI4\",\"zht_api_index.md\":\"DMjE1xBr\",\"zht_api_mp_math_angle.md\":\"D6i--7zd\",\"zht_api_mp_math_const.md\":\"DI0xAyWX\",\"zht_api_mp_math_equation.md\":\"B3rt0Pgw\",\"zht_api_mp_math_function.md\":\"Cf9utaTV\",\"zht_api_mp_math_index.md\":\"DbgI3vD1\",\"zht_api_mp_math_line.md\":\"-wtKMTMJ\",\"zht_api_mp_math_mp_math_typing.md\":\"BbOeRs-n\",\"zht_api_mp_math_plane.md\":\"o_Vroqha\",\"zht_api_mp_math_point.md\":\"CNwxPYyR\",\"zht_api_mp_math_segment.md\":\"Dr21f14B\",\"zht_api_mp_math_utils.md\":\"B57z4IwN\",\"zht_api_mp_math_vector.md\":\"DCG5CraB\",\"zht_api_particle_index.md\":\"DjZABivI\",\"zht_api_presets_index.md\":\"Bl7tnVS9\",\"zht_api_presets_model_index.md\":\"BQanubQ0\",\"zht_demo_best-practice.md\":\"CPNbD_Lg\",\"zht_guide_index.md\":\"BNnMViC8\",\"zht_index.md\":\"fkOYkZZe\",\"zht_refer_index.md\":\"B7CQS2UW\"}");function deserializeFunctions(r){return Array.isArray(r)?r.map(deserializeFunctions):typeof r=="object"&&r!==null?Object.keys(r).reduce((t,n)=>(t[n]=deserializeFunctions(r[n]),t),{}):typeof r=="string"&&r.startsWith("_vp-fn_")?new Function(`return ${r.slice(7)}`)():r};window.__VP_SITE_DATA__=deserializeFunctions(JSON.parse("{\"lang\":\"en-US\",\"dir\":\"ltr\",\"title\":\"VitePress\",\"description\":\"A VitePress site\",\"base\":\"/\",\"head\":[],\"router\":{\"prefetchLinks\":true},\"appearance\":true,\"themeConfig\":{\"logo\":\"/mbcp-logo.svg\",\"sidebar\":{\"/api/\":{\"base\":\"/api/\",\"items\":[{\"text\":\"MBCP\",\"items\":[{\"text\":\"mp_math\",\"items\":[{\"text\":\"mbcp.mp_math.angle\",\"link\":\"mp_m
</body>
</html>