mbcp/api/mp_math/function.html

66 lines
81 KiB
HTML
Raw Normal View History

<!DOCTYPE html>
<html lang="zh-Hans" dir="ltr">
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width,initial-scale=1">
<title>mbcp.mp_math.function | MBCP 文档</title>
<meta name="description" content="MBCP 粒子计算和生成库文档">
<meta name="generator" content="VitePress v1.3.4">
<link rel="preload stylesheet" href="/assets/style.UiSpMRXd.css" as="style">
<script type="module" src="/assets/app.Cz-vVA-m.js"></script>
<link rel="modulepreload" href="/assets/chunks/theme.BH7CkR6t.js">
<link rel="modulepreload" href="/assets/chunks/framework.DpC1ZpOZ.js">
<link rel="modulepreload" href="/assets/api_mp_math_function.md.lFd1gudy.lean.js">
<link rel="icon" type="image/svg+xml" href="/mbcp-logo.svg">
<link rel="stylesheet" href="https://fonts.font.im/css?family=Cousine:400,400i,700,700i|Poppins:100,100i,200,200i,300,300i,400,400i,500,500i,600,600i,700,700i,800,800i,900,900i">
<script id="check-dark-mode">(()=>{const e=localStorage.getItem("vitepress-theme-appearance")||"auto",a=window.matchMedia("(prefers-color-scheme: dark)").matches;(!e||e==="auto"?a:e==="dark")&&document.documentElement.classList.add("dark")})();</script>
<script id="check-mac-os">document.documentElement.classList.toggle("mac",/Mac|iPhone|iPod|iPad/i.test(navigator.platform));</script>
</head>
<body>
<div id="app"><div class="Layout" data-v-22f859ac><!--[--><!--]--><!--[--><span tabindex="-1" data-v-3e86afbf></span><a href="#VPContent" class="VPSkipLink visually-hidden" data-v-3e86afbf> Skip to content </a><!--]--><!----><header class="VPNav" data-v-22f859ac data-v-2a4e514e><div class="VPNavBar has-sidebar top" data-v-2a4e514e data-v-1303e283><div class="wrapper" data-v-1303e283><div class="container" data-v-1303e283><div class="title" data-v-1303e283><div class="VPNavBarTitle has-sidebar" data-v-1303e283 data-v-10b95b50><a class="title" href="/" data-v-10b95b50><!--[--><!--]--><!--[--><img class="VPImage logo" src="/mbcp-logo.svg" alt data-v-f925500d><!--]--><span data-v-10b95b50>MBCP 文档</span><!--[--><!--]--></a></div></div><div class="content" data-v-1303e283><div class="content-body" data-v-1303e283><!--[--><!--]--><div class="VPNavBarSearch search" data-v-1303e283><!--[--><!----><div id="local-search"><button type="button" class="DocSearch DocSearch-Button" aria-label="打开搜索框"><span class="DocSearch-Button-Container"><span class="vp-icon DocSearch-Search-Icon"></span><span class="DocSearch-Button-Placeholder">搜索文档</span></span><span class="DocSearch-Button-Keys"><kbd class="DocSearch-Button-Key"></kbd><kbd class="DocSearch-Button-Key">K</kbd></span></button></div><!--]--></div><nav aria-labelledby="main-nav-aria-label" class="VPNavBarMenu menu" data-v-1303e283 data-v-0fb289c1><span id="main-nav-aria-label" class="visually-hidden" data-v-0fb289c1> Main Navigation </span><!--[--><!--[--><a class="VPLink link VPNavBarMenuLink" href="/guide/" tabindex="0" data-v-0fb289c1 data-v-ad4a8b64><!--[--><span data-v-ad4a8b64>快速开始</span><!--]--></a><!--]--><!--[--><a class="VPLink link VPNavBarMenuLink" href="/refer.html" tabindex="0" data-v-0fb289c1 data-v-ad4a8b64><!--[--><span data-v-ad4a8b64>参考</span><!--]--></a><!--]--><!--[--><a class="VPLink link VPNavBarMenuLink" href="/api/" tabindex="0" data-v-0fb289c1 data-v-ad4a8b64><!--[--><span data-v-ad4a8b64>API引用</span><!--]--></a><!--]--><!--[--><a class="VPLink link VPNavBarMenuLink" href="/demo/" tabindex="0" data-v-0fb289c1 data-v-ad4a8b64><!--[--><span data-v-ad4a8b64>实例</span><!--]--></a><!--]--><!--]--></nav><div class="VPFlyout VPNavBarTranslations translations" data-v-1303e283 data-v-cd7b67e8 data-v-ec8c49bc><button type="button" class="button" aria-haspopup="true" aria-expanded="false" aria-label="Change language" data-v-ec8c49bc><span class="text" data-v-ec8c49bc><span class="vpi-languages option-icon" data-v-ec8c49bc></span><!----><span class="vpi-chevron-down text-icon" data-v-ec8c49bc></span></span></button><div class="menu" data-v-ec8c49bc><div class="VPMenu" data-v-ec8c49bc data-v-9990563e><!----><!--[--><!--[--><div class="items" data-v-cd7b67e8><p class="title" data-v-cd7b67e8>简体中文</p><!--[--><div class="VPMenuLink" data-v-cd7b67e8 data-v-79776a7a><a class="VPLink link" href="/en/api/mp_math/function.html" data-v-79776a7a><!--[-->English<!--]--></a></div><div class="VPMenuLink" data-v-cd7b67e8 data-v-79776a7a><a class="VPLink link" href="/ja/api/mp_math/function.html" data-v-79776a7a><!--[-->日本語<!--]--></a></div><div class="VPMenuLink" data-v-cd7b67e8 data-v-79776a7a><a class="VPLink link" href="/zht/api/mp_math/function.html" data-v-79776a7a><!--[-->繁體中文<!--]--></a></div><!--]--></div><!--]--><!--]--></div></div></div><div class="VPNavBarAppearance appearance" data-v-1303e283 data-v-2a6692f8><button class="VPSwitch VPSwitchAppearance" type="button" role="switch" title="Switch to dark theme" aria-checked="false" data-v-2a6692f8 data-v-3a50aa5c data-v-d82e607b><span class="check" data-v-d82e607b><span class="icon" data-v-d82e607b><!--[--><span class="vpi-sun sun" data-v-3a50aa5c></span><span class="vpi-moon moon" data-v-3a50aa5c></span><!--]--></span></span></button></div><div class="VPSocialLinks VPNavBarSocialLinks social-links" data-v-1303e283 data-v-f3b91b3a data-v-fa18fe49><!--[--><a class="VPSocialLink no-icon" href="https://github.com/snowykami/mbcp" aria-label="github" target="_blank"
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> &quot;&quot;&quot;</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> 计算三元函数在某点的梯度向量。</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> &gt; [!tip]</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> &gt; 已知一个函数$f(x, y, z)$,则其在点$(x_0, y_0, z_0)$处的梯度向量为:</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> $</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">\\</span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">nabla f(x_0, y_0, z_0) = </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">\\</span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">left(</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">\\</span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">frac{</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">\\</span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">partial f}{</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">\\</span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">partial x}, </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">\\</span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">frac{</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">\\</span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">partial f}{</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">\\</span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">partial y}, </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">\\</span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">frac{</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">\\</span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">partial f}{</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">\\</span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">partial z}</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">\\</span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">right)$</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> Args:</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> func: 三元函数</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> p: 点</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> epsilon: 偏移量</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> Returns:</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> 梯度</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> &quot;&quot;&quot;</span></span>
<span class="line"><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> dx </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> (func(p.x </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">+</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> epsilon, p.y, p.z) </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">-</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> func(p.x </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">-</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> epsilon, p.y, p.z)) </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">/</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> (</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">2</span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> *</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> epsilon)</span></span>
<span class="line"><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> dy </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> (func(p.x, p.y </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">+</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> epsilon, p.z) </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">-</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> func(p.x, p.y </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">-</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> epsilon, p.z)) </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">/</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> (</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">2</span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> *</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> epsilon)</span></span>
<span class="line"><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> dz </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> (func(p.x, p.y, p.z </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">+</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> epsilon) </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">-</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> func(p.x, p.y, p.z </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">-</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> epsilon)) </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">/</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> (</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">2</span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> *</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> epsilon)</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> Vector3(dx, dy, dz)</span></span></code></pre></div></details><h3 id="def-curry-func-multivarsfunc-args-var-onevarfunc" tabindex="-1"><em><strong>def</strong></em> <code>curry(func: MultiVarsFunc, *args: Var) -&gt; OneVarFunc</code> <a class="header-anchor" href="#def-curry-func-multivarsfunc-args-var-onevarfunc" aria-label="Permalink to &quot;***def*** `curry(func: MultiVarsFunc, *args: Var) -&gt; OneVarFunc`&quot;"></a></h3><p><strong>说明</strong>: 对多参数函数进行柯里化。</p><div class="tip custom-block github-alert"><p class="custom-block-title">TIP</p><p>有关函数柯里化,可参考<a href="https://zhuanlan.zhihu.com/p/355859667" target="_blank" rel="noreferrer">函数式编程--柯理化Currying</a></p></div><p><strong>参数</strong>:</p><blockquote><ul><li>func: 函数</li><li>*args: 参数</li></ul></blockquote><p><strong>返回</strong>: 柯里化后的函数</p><p><strong>示例</strong>:</p><div class="language-python vp-adaptive-theme"><button title="Copy Code" class="copy"></button><span class="lang">python</span><pre class="shiki shiki-themes github-light github-dark vp-code" tabindex="0"><code><span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">def</span><span style="--shiki-light:#6F42C1;--shiki-dark:#B392F0;"> add</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(a: </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">int</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">, b: </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">int</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">, c: </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">int</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">) -&gt; </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">int</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> a </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">+</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> b </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">+</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> c</span></span>
<span class="line"><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">add_curried </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> curry(add, </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">1</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">, </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">2</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">)</span></span>
<span class="line"><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">add_curried(</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">3</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">) </span><span style="--shiki-light:#6A737D;--shiki-dark:#6A737D;"># 6</span></span></code></pre></div><details><summary><b>源代码</b><a href="https://github.com/snowykami/mbcp/tree/main/mbcp/mp_math/function.py#L30" target="_blank">在GitHub上查看</a></summary><div class="language-python vp-adaptive-theme"><button title="Copy Code" class="copy"></button><span class="lang">python</span><pre class="shiki shiki-themes github-light github-dark vp-code" tabindex="0"><code><span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">def</span><span style="--shiki-light:#6F42C1;--shiki-dark:#B392F0;"> curry</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(func: MultiVarsFunc, </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">*</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">args: Var) -&gt; OneVarFunc:</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> &quot;&quot;&quot;</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> 对多参数函数进行柯里化。</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> &gt; [!tip]</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> &gt; 有关函数柯里化,可参考[函数式编程--柯理化Currying](https://zhuanlan.zhihu.com/p/355859667)</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> Args:</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> func: 函数</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> *args: 参数</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> Returns:</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> 柯里化后的函数</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> Examples:</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> ```python</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> def add(a: int, b: int, c: int) -&gt; int:</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> return a + b + c</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> add_curried = curry(add, 1, 2)</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> add_curried(3) # 6</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> ```</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> &quot;&quot;&quot;</span></span>
<span class="line"></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> def</span><span style="--shiki-light:#6F42C1;--shiki-dark:#B392F0;"> curried_func</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(</span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">*</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">args2: Var) -&gt; Var:</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> &quot;&quot;&quot;@litedoc-hide&quot;&quot;&quot;</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> func(</span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">*</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">args, </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">*</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">args2)</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> curried_func</span></span></code></pre></div></details></div></div></main><footer class="VPDocFooter" data-v-40342069 data-v-a4b38bd6><!--[--><!--]--><!----><nav class="prev-next" aria-labelledby="doc-footer-aria-label" data-v-a4b38bd6><span class="visually-hidden" id="doc-footer-aria-label" data-v-a4b38bd6>Pager</span><div class="pager" data-v-a4b38bd6><a class="VPLink link pager-link prev" href="/api/mp_math/equation.html" data-v-a4b38bd6><!--[--><span class="desc" data-v-a4b38bd6>上一页</span><span class="title" data-v-a4b38bd6>mbcp.mp_math.equation</span><!--]--></a></div><div class="pager" data-v-a4b38bd6><a class="VPLink link pager-link next" href="/api/mp_math/" data-v-a4b38bd6><!--[--><span class="desc" data-v-a4b38bd6>下一页</span><span class="title" data-v-a4b38bd6>mbcp.mp_math</span><!--]--></a></div></nav></footer><!--[--><!--]--></div></div></div><!--[--><!--]--></div></div><footer class="VPFooter has-sidebar" data-v-22f859ac data-v-e3ca6860><div class="container" data-v-e3ca6860><p class="message" data-v-e3ca6860>文档由 <a href="https://vitepress.dev/">VitePress</a> 构建 | API引用由 <a href="https://github.com/LiteyukiStudio/litedoc">litedoc</a> 生成</p><p class="copyright" data-v-e3ca6860>Copyright (C) 2020-2024 SnowyKami. All Rights Reserved</p></div></footer><!--[--><!--]--></div></div>
<script>window.__VP_HASH_MAP__=JSON.parse("{\"api_api.md\":\"CMvAMn4b\",\"api_index.md\":\"BYCWCWDw\",\"api_mp_math_angle.md\":\"ZHQLVZi6\",\"api_mp_math_const.md\":\"DPfWDlOC\",\"api_mp_math_equation.md\":\"DNL3RhRT\",\"api_mp_math_function.md\":\"lFd1gudy\",\"api_mp_math_index.md\":\"CBaWj2TG\",\"api_mp_math_line.md\":\"DjfQ-B5i\",\"api_mp_math_mp_math.md\":\"CpQngdPn\",\"api_mp_math_mp_math_typing.md\":\"ueXwUe7x\",\"api_mp_math_plane.md\":\"CXpU2f7r\",\"api_mp_math_point.md\":\"JbQs_Fqs\",\"api_mp_math_segment.md\":\"BkjsiFZK\",\"api_mp_math_utils.md\":\"C-Gf-q7v\",\"api_mp_math_vector.md\":\"Bmeqjm-R\",\"api_particle_index.md\":\"elMkn6tv\",\"api_particle_particle.md\":\"jeindv3k\",\"api_presets_index.md\":\"DAns7uVy\",\"api_presets_model_index.md\":\"BV3cglvI\",\"api_presets_model_model.md\":\"CkT5A2Vx\",\"api_presets_presets.md\":\"DKvfMdjr\",\"demo_index.md\":\"CVAdlaFI\",\"en_api_api.md\":\"DNV43Nd2\",\"en_api_index.md\":\"rIvJ-tI-\",\"en_api_mp_math_angle.md\":\"BWpDhXE0\",\"en_api_mp_math_const.md\":\"C7RPr8Yw\",\"en_api_mp_math_equation.md\":\"Q3edAlTb\",\"en_api_mp_math_function.md\":\"sTyZQ9Kp\",\"en_api_mp_math_index.md\":\"DRjWG5hd\",\"en_api_mp_math_line.md\":\"BeveAfEc\",\"en_api_mp_math_mp_math.md\":\"Bg5eFIMk\",\"en_api_mp_math_mp_math_typing.md\":\"By9al44H\",\"en_api_mp_math_plane.md\":\"DS5OUSgQ\",\"en_api_mp_math_point.md\":\"mIUs1IAB\",\"en_api_mp_math_segment.md\":\"l3KDDWfs\",\"en_api_mp_math_utils.md\":\"BrPHvGZ2\",\"en_api_mp_math_vector.md\":\"BkOb6w9W\",\"en_api_particle_index.md\":\"LU1iJ7Ch\",\"en_api_particle_particle.md\":\"BFOr8qjE\",\"en_api_presets_index.md\":\"BrQ3Pk92\",\"en_api_presets_model_index.md\":\"D-C7zM8U\",\"en_api_presets_model_model.md\":\"DaWJcWmr\",\"en_api_presets_presets.md\":\"OKzOdeyi\",\"en_guide_index.md\":\"C3kI8f8A\",\"en_index.md\":\"D5CddOW-\",\"en_refer_index.md\":\"Cq6GWi0V\",\"guide_index.md\":\"BVhQ0kPy\",\"index.md\":\"DJWBRkUz\",\"ja_api_api.md\":\"asJZCXie\",\"ja_api_index.md\":\"BkN-pZ-z\",\"ja_api_mp_math_angle.md\":\"Q4KOkl4D\",\"ja_api_mp_math_const.md\":\"qnersNfK\",\"ja_api_mp_math_equation.md\":\"Cr5pOveT\",\"ja_api_mp_math_function.md\":\"xybs8Koc\",\"ja_api_mp_math_index.md\":\"CRjx8TkH\",\"ja_api_mp_math_line.md\":\"B06TZxOj\",\"ja_api_mp_math_mp_math.md\":\"BBRkfUbW\",\"ja_api_mp_math_mp_math_typing.md\":\"B48JOb28\",\"ja_api_mp_math_plane.md\":\"BsI6AccW\",\"ja_api_mp_math_point.md\":\"BaRaB4F7\",\"ja_api_mp_math_segment.md\":\"SGTKzHC-\",\"ja_api_mp_math_utils.md\":\"B0AuGUaq\",\"ja_api_mp_math_vector.md\":\"ZV6g6Cqy\",\"ja_api_particle_index.md\":\"lQM76phs\",\"ja_api_particle_particle.md\":\"BlQt6-7L\",\"ja_api_presets_index.md\":\"bRV33rrM\",\"ja_api_presets_model_index.md\":\"CU3tcROp\",\"ja_api_presets_model_model.md\":\"Ca837h0t\",\"ja_api_presets_presets.md\":\"B4NIHC57\",\"ja_guide_index.md\":\"w1Tf2Adm\",\"ja_index.md\":\"DnsqZi7i\",\"ja_refer_index.md\":\"DamUscs8\",\"refer_function_curry.md\":\"D_oqRDd3\",\"refer_function_function.md\":\"Bi_82lIJ\",\"refer_index.md\":\"yFZW0kI4\",\"zht_api_api.md\":\"DiHUkCYv\",\"zht_api_index.md\":\"BEoHS6eY\",\"zht_api_mp_math_angle.md\":\"CUXs1f3L\",\"zht_api_mp_math_const.md\":\"BRbOg-ik\",\"zht_api_mp_math_equation.md\":\"DkF23wZv\",\"zht_api_mp_math_function.md\":\"Hx5Fv7yg\",\"zht_api_mp_math_index.md\":\"dkTuU5Sc\",\"zht_api_mp_math_line.md\":\"ChBwWN5h\",\"zht_api_mp_math_mp_math.md\":\"C2fKj2U-\",\"zht_api_mp_math_mp_math_typing.md\":\"DRnEBE41\",\"zht_api_mp_math_plane.md\":\"CsqZz8AP\",\"zht_api_mp_math_point.md\":\"DdPny4Ep\",\"zht_api_mp_math_segment.md\":\"CGlDPyId\",\"zht_api_mp_math_utils.md\":\"qRrypZkK\",\"zht_api_mp_math_vector.md\":\"BguyfQ9I\",\"zht_api_particle_index.md\":\"C3uvyfWb\",\"zht_api_particle_particle.md\":\"BVp5wRXc\",\"zht_api_presets_index.md\":\"D5bUORc4\",\"zht_api_presets_model_index.md\":\"BABYoPvx\",\"zht_api_presets_model_model.md\":\"D7UOTujb\",\"zht_api_presets_presets.md\":\"CRL6Jo8B\",\"zht_guide_index.md\":\"BNnMViC8\",\"zht_index.md\":\"CUR8-QXm\",\"zht_refer_index.md\":\"B7CQS2UW\"}");function deserializeFunctions(r){return Array.isArray(r)
</body>
</html>