2024-09-03 22:49:39 +08:00
|
|
|
|
import{_ as s,c as i,o as a,a4 as n}from"./chunks/framework.DpC1ZpOZ.js";const u=JSON.parse('{"title":"mbcp.mp_math.equation","description":"","frontmatter":{"title":"mbcp.mp_math.equation","lastUpdated":false},"headers":[],"relativePath":"en/api/mp_math/equation.md","filePath":"en/api/mp_math/equation.md"}'),t={name:"en/api/mp_math/equation.md"},l=n(`<h1 id="mbcp-mp-math-equation" tabindex="-1">mbcp.mp_math.equation <a class="header-anchor" href="#mbcp-mp-math-equation" aria-label="Permalink to "mbcp.mp_math.equation""></a></h1><p>本模块定义了方程相关的类和函数以及一些常用的数学函数</p><h3 id="class-curveequation" tabindex="-1"><em><strong>class</strong></em> <code>CurveEquation</code> <a class="header-anchor" href="#class-curveequation" aria-label="Permalink to "***class*** \`CurveEquation\`""></a></h3><h4 id="method-init-self-x-func-onevarfunc-y-func-onevarfunc-z-func-onevarfunc" tabindex="-1"><em><strong>method</strong></em> <code>__init__(self, x_func: OneVarFunc, y_func: OneVarFunc, z_func: OneVarFunc)</code> <a class="header-anchor" href="#method-init-self-x-func-onevarfunc-y-func-onevarfunc-z-func-onevarfunc" aria-label="Permalink to "***method*** \`__init__(self, x_func: OneVarFunc, y_func: OneVarFunc, z_func: OneVarFunc)\`""></a></h4><p><strong>Description</strong>: 曲线方程。</p><p><strong>Arguments</strong>:</p><blockquote><ul><li>x_func (<a href="./mp_math_typing.html#var-onevarfunc"><code>OneVarFunc</code></a>): x函数</li><li>y_func (<a href="./mp_math_typing.html#var-onevarfunc"><code>OneVarFunc</code></a>): y函数</li><li>z_func (<a href="./mp_math_typing.html#var-onevarfunc"><code>OneVarFunc</code></a>): z函数</li></ul></blockquote><details><summary><b>Source code</b> or <a href="https://github.com/snowykami/mbcp/tree/main/mbcp/mp_math/equation.py#L12" target="_blank">View on GitHub</a></summary><div class="language-python vp-adaptive-theme"><button title="Copy Code" class="copy"></button><span class="lang">python</span><pre class="shiki shiki-themes github-light github-dark vp-code" tabindex="0"><code><span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">def</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> __init__</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(self, x_func: OneVarFunc, y_func: OneVarFunc, z_func: OneVarFunc):</span></span>
|
2024-08-30 13:46:30 +08:00
|
|
|
|
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> """</span></span>
|
|
|
|
|
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> 曲线方程。</span></span>
|
|
|
|
|
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> Args:</span></span>
|
2024-08-31 09:34:37 +08:00
|
|
|
|
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> x_func ([\`OneVarFunc\`](./mp_math_typing#var-onevarfunc)): x函数</span></span>
|
|
|
|
|
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> y_func ([\`OneVarFunc\`](./mp_math_typing#var-onevarfunc)): y函数</span></span>
|
|
|
|
|
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> z_func ([\`OneVarFunc\`](./mp_math_typing#var-onevarfunc)): z函数</span></span>
|
2024-08-30 13:46:30 +08:00
|
|
|
|
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> """</span></span>
|
|
|
|
|
<span class="line"><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.x_func </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> x_func</span></span>
|
|
|
|
|
<span class="line"><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.y_func </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> y_func</span></span>
|
2024-09-03 22:49:39 +08:00
|
|
|
|
<span class="line"><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.z_func </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> z_func</span></span></code></pre></div></details><h4 id="method-call-self-t-var-point3-tuple-point3" tabindex="-1"><em><strong>method</strong></em> <code>__call__(self, *t: Var) -> Point3 | tuple[Point3, ...]</code> <a class="header-anchor" href="#method-call-self-t-var-point3-tuple-point3" aria-label="Permalink to "***method*** \`__call__(self, *t: Var) -> Point3 | tuple[Point3, ...]\`""></a></h4><p><strong>Description</strong>: 计算曲线上的点。</p><p><strong>Arguments</strong>:</p><blockquote><ul><li>*t:</li><li>参数:</li></ul></blockquote><p><strong>Return</strong>: 目标点</p><details><summary><b>Source code</b> or <a href="https://github.com/snowykami/mbcp/tree/main/mbcp/mp_math/equation.py#L24" target="_blank">View on GitHub</a></summary><div class="language-python vp-adaptive-theme"><button title="Copy Code" class="copy"></button><span class="lang">python</span><pre class="shiki shiki-themes github-light github-dark vp-code" tabindex="0"><code><span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">def</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> __call__</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(self, </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">*</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">t: Var) -> Point3 </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">|</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> tuple[Point3, </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">...</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">]:</span></span>
|
2024-08-30 13:46:30 +08:00
|
|
|
|
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> """</span></span>
|
|
|
|
|
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> 计算曲线上的点。</span></span>
|
|
|
|
|
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> Args:</span></span>
|
|
|
|
|
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> *t:</span></span>
|
|
|
|
|
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> 参数</span></span>
|
|
|
|
|
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> Returns:</span></span>
|
|
|
|
|
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> 目标点</span></span>
|
|
|
|
|
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> """</span></span>
|
|
|
|
|
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> if</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> len</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(t) </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">==</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> 1</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>
|
|
|
|
|
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> Point3(</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.x_func(t[</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">0</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">]), </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.y_func(t[</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">0</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">]), </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.z_func(t[</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">0</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">]))</span></span>
|
|
|
|
|
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> else</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>
|
2024-09-01 00:02:40 +08:00
|
|
|
|
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> tuple</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">([Point3(x, y, z) </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">for</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> x, y, z </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">in</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> zip</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.x_func(t), </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.y_func(t), </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.z_func(t))])</span></span></code></pre></div></details><h3 id="func-get-partial-derivative-func-func-multivarsfunc-var-int-tuple-int-epsilon-number-epsilon-multivarsfunc" tabindex="-1"><em><strong>func</strong></em> <code>get_partial_derivative_func(func: MultiVarsFunc, var: int | tuple[int, ...], epsilon: Number = EPSILON) -> MultiVarsFunc</code> <a class="header-anchor" href="#func-get-partial-derivative-func-func-multivarsfunc-var-int-tuple-int-epsilon-number-epsilon-multivarsfunc" aria-label="Permalink to "***func*** \`get_partial_derivative_func(func: MultiVarsFunc, var: int | tuple[int, ...], epsilon: Number = EPSILON) -> MultiVarsFunc\`""></a></h3><p><strong>Description</strong>: 求N元函数一阶偏导函数。这玩意不太稳定,慎用。</p><div class="warning custom-block github-alert"><p class="custom-block-title">WARNING</p><p>目前数学界对于一个函数的导函数并没有通解的说法,因此该函数的稳定性有待提升</p></div><p><strong>Arguments</strong>:</p><blockquote><ul><li>func (<a href="./mp_math_typing.html#var-multivarsfunc"><code>MultiVarsFunc</code></a>): N元函数</li><li>var: 变量位置,可为整数(一阶偏导)或整数元组(高阶偏导)</li><li>epsilon: 偏移量</li></ul></blockquote><p><strong>Return</strong>: 偏导函数</p><p><strong>Raises</strong>:</p><blockquote><ul><li>ValueError 无效变量类型</li></ul></blockquote><details><summary><b>Source code</b> or <a href="https://github.com/snowykami/mbcp/tree/main/mbcp/mp_math/equation.py#L42" target="_blank">View on GitHub</a></summary><div class="language-python vp-adaptive-theme"><button title="Copy Code" class="copy"></button><span class="lang">python</span><pre class="shiki shiki-themes github-light github-dark vp-code" tabindex="0"><code><span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">def</span><span style="--shiki-light:#6F42C1;--shiki-dark:#B392F0;"> get_partial_derivative_func</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(func: MultiVarsFunc, var: </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">int</span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> |</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> tuple[</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">int</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">, </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">...</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">], epsilon: Number</span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">EPSILON</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">) -> MultiVarsFunc:</span></span>
|
2024-08-28 12:03:02 +08:00
|
|
|
|
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> """</span></span>
|
|
|
|
|
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> 求N元函数一阶偏导函数。这玩意不太稳定,慎用。</span></span>
|
2024-08-29 18:31:08 +08:00
|
|
|
|
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> > [!warning]</span></span>
|
2024-08-29 18:52:57 +08:00
|
|
|
|
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> > 目前数学界对于一个函数的导函数并没有通解的说法,因此该函数的稳定性有待提升</span></span>
|
2024-08-29 18:31:08 +08:00
|
|
|
|
<span class="line"></span>
|
2024-08-28 12:03:02 +08:00
|
|
|
|
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> Args:</span></span>
|
2024-08-31 09:34:37 +08:00
|
|
|
|
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> func ([\`MultiVarsFunc\`](./mp_math_typing#var-multivarsfunc)): N元函数</span></span>
|
2024-08-28 12:03:02 +08:00
|
|
|
|
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> var: 变量位置,可为整数(一阶偏导)或整数元组(高阶偏导)</span></span>
|
|
|
|
|
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> epsilon: 偏移量</span></span>
|
|
|
|
|
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> Returns:</span></span>
|
|
|
|
|
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> 偏导函数</span></span>
|
|
|
|
|
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> Raises:</span></span>
|
|
|
|
|
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> ValueError: 无效变量类型</span></span>
|
|
|
|
|
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> """</span></span>
|
|
|
|
|
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> if</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> isinstance</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(var, </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">int</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">):</span></span>
|
|
|
|
|
<span class="line"></span>
|
|
|
|
|
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> def</span><span style="--shiki-light:#6F42C1;--shiki-dark:#B392F0;"> partial_derivative_func</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(</span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">*</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">args: Var) -> Var:</span></span>
|
2024-08-29 19:00:41 +08:00
|
|
|
|
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> """@litedoc-hide"""</span></span>
|
2024-08-28 12:03:02 +08:00
|
|
|
|
<span class="line"><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> args_list_plus </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> list</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(args)</span></span>
|
|
|
|
|
<span class="line"><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> args_list_plus[var] </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">+=</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> epsilon</span></span>
|
|
|
|
|
<span class="line"><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> args_list_minus </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> list</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(args)</span></span>
|
|
|
|
|
<span class="line"><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> args_list_minus[var] </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">-=</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> epsilon</span></span>
|
|
|
|
|
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> (func(</span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">*</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">args_list_plus) </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">-</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> func(</span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">*</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">args_list_minus)) </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">/</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> (</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">2</span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> *</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> epsilon)</span></span>
|
|
|
|
|
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> partial_derivative_func</span></span>
|
|
|
|
|
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> elif</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> isinstance</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(var, </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">tuple</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">):</span></span>
|
|
|
|
|
<span class="line"></span>
|
|
|
|
|
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> def</span><span style="--shiki-light:#6F42C1;--shiki-dark:#B392F0;"> high_order_partial_derivative_func</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(</span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">*</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">args: Var) -> Var:</span></span>
|
2024-08-29 19:00:41 +08:00
|
|
|
|
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> """</span></span>
|
|
|
|
|
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> @litedoc-hide</span></span>
|
|
|
|
|
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> 求高阶偏导函数</span></span>
|
|
|
|
|
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> Args:</span></span>
|
|
|
|
|
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> *args: 参数</span></span>
|
|
|
|
|
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> Returns:</span></span>
|
|
|
|
|
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> 高阶偏导数值</span></span>
|
|
|
|
|
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> """</span></span>
|
2024-08-28 12:03:02 +08:00
|
|
|
|
<span class="line"><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> result_func </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> func</span></span>
|
|
|
|
|
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> for</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> v </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">in</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> var:</span></span>
|
|
|
|
|
<span class="line"><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> result_func </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> get_partial_derivative_func(result_func, v, epsilon)</span></span>
|
|
|
|
|
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> result_func(</span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">*</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">args)</span></span>
|
|
|
|
|
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> high_order_partial_derivative_func</span></span>
|
|
|
|
|
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> else</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>
|
2024-09-03 22:49:39 +08:00
|
|
|
|
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> raise</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> ValueError</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(</span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">'Invalid var type'</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">)</span></span></code></pre></div></details>`,23),p=[l];function h(e,k,r,E,d,c){return a(),i("div",null,p)}const o=s(t,[["render",h]]);export{u as __pageData,o as default};
|