mbcp/en/api/mp_math/line.html

202 lines
96 KiB
HTML
Raw Normal View History

<!DOCTYPE html>
<html lang="en-US" dir="ltr">
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width,initial-scale=1">
<title>mbcp.mp_math.line | MBCP docs</title>
<meta name="description" content="MBCP library docs">
<meta name="generator" content="VitePress v1.3.4">
<link rel="preload stylesheet" href="/assets/style.DnAlSDDf.css" as="style">
<script type="module" src="/assets/app.DSCSdM_3.js"></script>
<link rel="modulepreload" href="/assets/chunks/theme.CIS5wKR_.js">
<link rel="modulepreload" href="/assets/chunks/framework.C94oF1kp.js">
<link rel="modulepreload" href="/assets/en_api_mp_math_line.md.BkGvfNB7.lean.js">
<link rel="icon" type="image/svg+xml" href="/mbcp-logo.svg">
<link rel="stylesheet" href="https://fonts.font.im/css?family=Cousine:400,400i,700,700i|Poppins:100,100i,200,200i,300,300i,400,400i,500,500i,600,600i,700,700i,800,800i,900,900i">
<script id="check-dark-mode">(()=>{const e=localStorage.getItem("vitepress-theme-appearance")||"auto",a=window.matchMedia("(prefers-color-scheme: dark)").matches;(!e||e==="auto"?a:e==="dark")&&document.documentElement.classList.add("dark")})();</script>
<script id="check-mac-os">document.documentElement.classList.toggle("mac",/Mac|iPhone|iPod|iPad/i.test(navigator.platform));</script>
</head>
<body>
<div id="app"><div class="Layout" data-v-22f859ac><!--[--><!--]--><!--[--><span tabindex="-1" data-v-3e86afbf></span><a href="#VPContent" class="VPSkipLink visually-hidden" data-v-3e86afbf> Skip to content </a><!--]--><!----><header class="VPNav" data-v-22f859ac data-v-2a4e514e><div class="VPNavBar has-sidebar top" data-v-2a4e514e data-v-1303e283><div class="wrapper" data-v-1303e283><div class="container" data-v-1303e283><div class="title" data-v-1303e283><div class="VPNavBarTitle has-sidebar" data-v-1303e283 data-v-10b95b50><a class="title" href="/en/" data-v-10b95b50><!--[--><!--]--><!--[--><img class="VPImage logo" src="/mbcp-logo.svg" alt data-v-f925500d><!--]--><span data-v-10b95b50>MBCP docs</span><!--[--><!--]--></a></div></div><div class="content" data-v-1303e283><div class="content-body" data-v-1303e283><!--[--><!--]--><div class="VPNavBarSearch search" data-v-1303e283><!----></div><nav aria-labelledby="main-nav-aria-label" class="VPNavBarMenu menu" data-v-1303e283 data-v-0fb289c1><span id="main-nav-aria-label" class="visually-hidden" data-v-0fb289c1> Main Navigation </span><!--[--><!--[--><a class="VPLink link VPNavBarMenuLink" href="/en/guide/" tabindex="0" data-v-0fb289c1 data-v-ad4a8b64><!--[--><span data-v-ad4a8b64>Get Start</span><!--]--></a><!--]--><!--[--><a class="VPLink link VPNavBarMenuLink" href="/en/refer.html" tabindex="0" data-v-0fb289c1 data-v-ad4a8b64><!--[--><span data-v-ad4a8b64>Reference</span><!--]--></a><!--]--><!--[--><a class="VPLink link VPNavBarMenuLink" href="/en/api/" tabindex="0" data-v-0fb289c1 data-v-ad4a8b64><!--[--><span data-v-ad4a8b64>API Reference</span><!--]--></a><!--]--><!--[--><a class="VPLink link VPNavBarMenuLink" href="/en/demo/" tabindex="0" data-v-0fb289c1 data-v-ad4a8b64><!--[--><span data-v-ad4a8b64>Demo</span><!--]--></a><!--]--><!--]--></nav><div class="VPFlyout VPNavBarTranslations translations" data-v-1303e283 data-v-cd7b67e8 data-v-ec8c49bc><button type="button" class="button" aria-haspopup="true" aria-expanded="false" aria-label="Change language" data-v-ec8c49bc><span class="text" data-v-ec8c49bc><span class="vpi-languages option-icon" data-v-ec8c49bc></span><!----><span class="vpi-chevron-down text-icon" data-v-ec8c49bc></span></span></button><div class="menu" data-v-ec8c49bc><div class="VPMenu" data-v-ec8c49bc data-v-9990563e><!----><!--[--><!--[--><div class="items" data-v-cd7b67e8><p class="title" data-v-cd7b67e8>English</p><!--[--><div class="VPMenuLink" data-v-cd7b67e8 data-v-79776a7a><a class="VPLink link" href="/api/mp_math/line.html" data-v-79776a7a><!--[-->简体中文<!--]--></a></div><div class="VPMenuLink" data-v-cd7b67e8 data-v-79776a7a><a class="VPLink link" href="/ja/api/mp_math/line.html" data-v-79776a7a><!--[-->日本語<!--]--></a></div><div class="VPMenuLink" data-v-cd7b67e8 data-v-79776a7a><a class="VPLink link" href="/zht/api/mp_math/line.html" data-v-79776a7a><!--[-->繁體中文<!--]--></a></div><!--]--></div><!--]--><!--]--></div></div></div><div class="VPNavBarAppearance appearance" data-v-1303e283 data-v-2a6692f8><button class="VPSwitch VPSwitchAppearance" type="button" role="switch" title="Switch to dark theme" aria-checked="false" data-v-2a6692f8 data-v-3a50aa5c data-v-d82e607b><span class="check" data-v-d82e607b><span class="icon" data-v-d82e607b><!--[--><span class="vpi-sun sun" data-v-3a50aa5c></span><span class="vpi-moon moon" data-v-3a50aa5c></span><!--]--></span></span></button></div><div class="VPSocialLinks VPNavBarSocialLinks social-links" data-v-1303e283 data-v-f3b91b3a data-v-fa18fe49><!--[--><a class="VPSocialLink no-icon" href="https://github.com/snowykami/mbcp" aria-label="github" target="_blank" rel="noopener" data-v-fa18fe49 data-v-b0526bd7><span class="vpi-social-github" /></a><!--]--></div><div class="VPFlyout VPNavBarExtra extra" data-v-1303e283 data-v-2fc967b6 data-v-ec8c49bc><button type="button" class="button" aria-haspopup="true" aria-expanded="false" aria-label="extra navigation" data-v-ec8c49bc><span class="vpi-more-horizontal icon" data-v-ec8c49bc></span></button><div class="menu" data-v-ec8c49bc><div
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> &quot;&quot;&quot;</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> 三维空间中的直线。由一个点和一个方向向量确定。</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> Args:</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> point: 直线上的一点</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> direction: 直线的方向向量</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> &quot;&quot;&quot;</span></span>
<span class="line"><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.point </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> point</span></span>
<span class="line"><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.direction </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> direction</span></span></code></pre></div></details><h4 id="def-approx-self-other-line3-epsilon-float-approx-bool" tabindex="-1"><em><strong>def</strong></em> <code>approx(self, other: Line3, epsilon: float = APPROX) -&gt; bool</code> <a class="header-anchor" href="#def-approx-self-other-line3-epsilon-float-approx-bool" aria-label="Permalink to &quot;***def*** `approx(self, other: Line3, epsilon: float = APPROX) -&gt; bool`&quot;"></a></h4><p><strong>Description</strong>: 判断两条直线是否近似相等。</p><p><strong>Arguments</strong>:</p><blockquote><ul><li>other: 另一条直线</li><li>epsilon: 误差</li></ul></blockquote><p><strong>Return</strong>: 是否近似相等</p><details><summary><b>Source code</b> or <a href="https://github.com/snowykami/mbcp/tree/main/mbcp/mp_math/line.py#L29" target="_blank">View on GitHub</a></summary><div class="language-python vp-adaptive-theme"><button title="Copy Code" class="copy"></button><span class="lang">python</span><pre class="shiki shiki-themes github-light github-dark vp-code" tabindex="0"><code><span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">def</span><span style="--shiki-light:#6F42C1;--shiki-dark:#B392F0;"> approx</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(self, other: </span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">&#39;Line3&#39;</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">, epsilon: </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">float</span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">APPROX</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">) -&gt; </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">bool</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> &quot;&quot;&quot;</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> 判断两条直线是否近似相等。</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> Args:</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> other: 另一条直线</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> epsilon: 误差</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> Returns:</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> 是否近似相等</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> &quot;&quot;&quot;</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.is_approx_parallel(other, epsilon) </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">and</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> (</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.point </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">-</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> other.point).is_approx_parallel(</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.direction, epsilon)</span></span></code></pre></div></details><h4 id="def-cal-angle-self-other-line3-anyangle" tabindex="-1"><em><strong>def</strong></em> <code>cal_angle(self, other: Line3) -&gt; AnyAngle</code> <a class="header-anchor" href="#def-cal-angle-self-other-line3-anyangle" aria-label="Permalink to &quot;***def*** `cal_angle(self, other: Line3) -&gt; AnyAngle`&quot;"></a></h4><p><strong>Description</strong>: 计算直线和直线之间的夹角。</p><p><strong>Arguments</strong>:</p><blockquote><ul><li>other: 另一条直线</li></ul></blockquote><p><strong>Return</strong>: 夹角弧度</p><p><strong>Raises</strong>:</p><blockquote><ul><li>TypeError 不支持的类型</li></ul></blockquote><details><summary><b>Source code</b> or <a href="https://github.com/snowykami/mbcp/tree/main/mbcp/mp_math/line.py#L40" target="_blank">View on GitHub</a></summary><div class="language-python vp-adaptive-theme"><button title="Copy Code" class="copy"></button><span class="lang">python</span><pre class="shiki shiki-themes github-light github-dark vp-code" tabindex="0"><code><span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">def</span><span style="--shiki-light:#6F42C1;--shiki-dark:#B392F0;"> cal_angle</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(self, other: </span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">&#39;Line3&#39;</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">) -&gt; </span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">&#39;AnyAngle&#39;</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> &quot;&quot;&quot;</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> 计算直线和直线之间的夹角。</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> Args:</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> other: 另一条直线</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> Returns:</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> 夹角弧度</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> Raises:</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> TypeError: 不支持的类型</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> &quot;&quot;&quot;</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.direction.cal_angle(other.direction)</span></span></code></pre></div></details><h4 id="def-cal-distance-self-other-line3-point3-float" tabindex="-1"><em><strong>def</strong></em> <code>cal_distance(self, other: Line3 | Point3) -&gt; float</code> <a class="header-anchor" href="#def-cal-distance-self-other-line3-point3-float" aria-label="Permalink to &quot;***def*** `cal_distance(self, other: Line3 | Point3) -&gt; float`&quot;"></a></h4><p><strong>Description</strong>: 计算直线和直线或点之间的距离。</p><p><strong>Arguments</strong>:</p><blockquote><ul><li>other: 平行直线或点</li></ul></blockquote><p><strong>Return</strong>: 距离</p><p><strong>Raises</strong>:</p><blockquote><ul><li>TypeError 不支持的类型</li></ul></blockquote><details><summary><b>Source code</b> or <a href="https://github.com/snowykami/mbcp/tree/main/mbcp/mp_math/line.py#L52" target="_blank">View on GitHub</a></summary><div class="language-python vp-adaptive-theme"><button title="Copy Code" class="copy"></button><span class="lang">python</span><pre class="shiki shiki-themes github-light github-dark vp-code" tabindex="0"><code><span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">def</span><span style="--shiki-light:#6F42C1;--shiki-dark:#B392F0;"> cal_distance</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(self, other: </span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">&#39;Line3 | Point3&#39;</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">) -&gt; </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">float</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> &quot;&quot;&quot;</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> 计算直线和直线或点之间的距离。</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> Args:</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> other: 平行直线或点</span></span>
<span class="line"></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> Returns:</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> 距离</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> Raises:</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> TypeError: 不支持的类型</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> &quot;&quot;&quot;</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> if</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> isinstance</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(other, Line3):</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> if</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> ==</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> other:</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> 0</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> elif</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.is_parallel(other):</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> (other.point </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">-</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.point).cross(</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.direction).length </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">/</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.direction.length</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> elif</span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> not</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.is_coplanar(other):</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> abs</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.direction.cross(other.direction) </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">@</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> (</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.point </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">-</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> other.point) </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">/</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.direction.cross(other.direction).length)</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> else</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> 0</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> elif</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> isinstance</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(other, Point3):</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> (other </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">-</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.point).cross(</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.direction).length </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">/</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.direction.length</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> else</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> raise</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> TypeError</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(</span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">&#39;Unsupported type.&#39;</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">)</span></span></code></pre></div></details><h4 id="def-cal-intersection-self-other-line3-point3" tabindex="-1"><em><strong>def</strong></em> <code>cal_intersection(self, other: Line3) -&gt; Point3</code> <a class="header-anchor" href="#def-cal-intersection-self-other-line3-point3" aria-label="Permalink to &quot;***def*** `cal_intersection(self, other: Line3) -&gt; Point3`&quot;"></a></h4><p><strong>Description</strong>: 计算两条直线的交点。</p><p><strong>Arguments</strong>:</p><blockquote><ul><li>other: 另一条直线</li></ul></blockquote><p><strong>Return</strong>: 交点</p><p><strong>Raises</strong>:</p><blockquote><ul><li>ValueError 直线平行</li><li>ValueError 直线不共面</li></ul></blockquote><details><summary><b>Source code</b> or <a href="https://github.com/snowykami/mbcp/tree/main/mbcp/mp_math/line.py#L83" target="_blank">View on GitHub</a></summary><div class="language-python vp-adaptive-theme"><button title="Copy Code" class="copy"></button><span class="lang">python</span><pre class="shiki shiki-themes github-light github-dark vp-code" tabindex="0"><code><span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">def</span><span style="--shiki-light:#6F42C1;--shiki-dark:#B392F0;"> cal_intersection</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(self, other: </span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">&#39;Line3&#39;</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">) -&gt; </span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">&#39;Point3&#39;</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> &quot;&quot;&quot;</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> 计算两条直线的交点。</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> Args:</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> other: 另一条直线</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> Returns:</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> 交点</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> Raises:</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> ValueError: 直线平行</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> ValueError: 直线不共面</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> &quot;&quot;&quot;</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> if</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.is_parallel(other):</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> raise</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> ValueError</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(</span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">&#39;Lines are parallel and do not intersect.&#39;</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">)</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> if</span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> not</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.is_coplanar(other):</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> raise</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> ValueError</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(</span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">&#39;Lines are not coplanar and do not intersect.&#39;</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">)</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.point </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">+</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.direction.cross(other.direction) </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">@</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> other.direction.cross(</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.point </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">-</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> other.point) </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">/</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.direction.cross(other.direction).length </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">**</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> 2</span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> *</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.direction</span></span></code></pre></div></details><h4 id="def-cal-perpendicular-self-point-point3-line3" tabindex="-1"><em><strong>def</strong></em> <code>cal_perpendicular(self, point: Point3) -&gt; Line3</code> <a class="header-anchor" href="#def-cal-perpendicular-self-point-point3-line3" aria-label="Permalink to &quot;***def*** `cal_perpendicular(self, point: Point3) -&gt; Line3`&quot;"></a></h4><p><strong>Description</strong>: 计算直线经过指定点p的垂线。</p><p><strong>Arguments</strong>:</p><blockquote><ul><li>point: 指定点</li></ul></blockquote><p><strong>Return</strong>: 垂线</p><details><summary><b>Source code</b> or <a href="https://github.com/snowykami/mbcp/tree/main/mbcp/mp_math/line.py#L101" target="_blank">View on GitHub</a></summary><div class="language-python vp-adaptive-theme"><button title="Copy Code" class="copy"></button><span class="lang">python</span><pre class="shiki shiki-themes github-light github-dark vp-code" tabindex="0"><code><span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">def</span><span style="--shiki-light:#6F42C1;--shiki-dark:#B392F0;"> cal_perpendicular</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(self, point: </span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">&#39;Point3&#39;</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">) -&gt; </span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">&#39;Line3&#39;</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> &quot;&quot;&quot;</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> 计算直线经过指定点p的垂线。</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> Args:</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> point: 指定点</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> Returns:</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> 垂线</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> &quot;&quot;&quot;</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> Line3(point, </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.direction.cross(point </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">-</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.point))</span></span></code></pre></div></details><h4 id="def-get-point-self-t-realnumber-point3" tabindex="-1"><em><strong>def</strong></em> <code>get_point(self, t: RealNumber) -&gt; Point3</code> <a class="header-anchor" href="#def-get-point-self-t-realnumber-point3" aria-label="Permalink to &quot;***def*** `get_point(self, t: RealNumber) -&gt; Point3`&quot;"></a></h4><p><strong>Description</strong>: 获取直线上的点。同一条直线但起始点和方向向量不同则同一个t对应的点不同。</p><p><strong>Arguments</strong>:</p><blockquote><ul><li>t: 参数t</li></ul></blockquote><p><strong>Return</strong>: 点</p><details><summary><b>Source code</b> or <a href="https://github.com/snowykami/mbcp/tree/main/mbcp/mp_math/line.py#L111" target="_blank">View on GitHub</a></summary><div class="language-python vp-adaptive-theme"><button title="Copy Code" class="copy"></button><span class="lang">python</span><pre class="shiki shiki-themes github-light github-dark vp-code" tabindex="0"><code><span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">def</span><span style="--shiki-light:#6F42C1;--shiki-dark:#B392F0;"> get_point</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(self, t: RealNumber) -&gt; </span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">&#39;Point3&#39;</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> &quot;&quot;&quot;</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> 获取直线上的点。同一条直线但起始点和方向向量不同则同一个t对应的点不同。</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> Args:</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> t: 参数t</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> Returns:</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"></span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> &quot;&quot;&quot;</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.point </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">+</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> t </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">*</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.direction</span></span></code></pre></div></details><h4 id="def-get-parametric-equations-self-tuple-onesinglevarfunc-onesinglevarfunc-onesinglevarfunc" tabindex="-1"><em><strong>def</strong></em> <code>get_parametric_equations(self) -&gt; tuple[OneSingleVarFunc, OneSingleVarFunc, OneSingleVarFunc]</code> <a class="header-anchor" href="#def-get-parametric-equations-self-tuple-onesinglevarfunc-onesinglevarfunc-onesinglevarfunc" aria-label="Permalink to &quot;***def*** `get_parametric_equations(self) -&gt; tuple[OneSingleVarFunc, OneSingleVarFunc, OneSingleVarFunc]`&quot;"></a></h4><p><strong>Description</strong>: 获取直线的参数方程。</p><p><strong>Return</strong>: x(t), y(t), z(t)</p><details><summary><b>Source code</b> or <a href="https://github.com/snowykami/mbcp/tree/main/mbcp/mp_math/line.py#L121" target="_blank">View on GitHub</a></summary><div class="language-python vp-adaptive-theme"><button title="Copy Code" class="copy"></button><span class="lang">python</span><pre class="shiki shiki-themes github-light github-dark vp-code" tabindex="0"><code><span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">def</span><span style="--shiki-light:#6F42C1;--shiki-dark:#B392F0;"> get_parametric_equations</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(self) -&gt; tuple[OneSingleVarFunc, OneSingleVarFunc, OneSingleVarFunc]:</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> &quot;&quot;&quot;</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> 获取直线的参数方程。</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> Returns:</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> x(t), y(t), z(t)</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> &quot;&quot;&quot;</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> (</span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">lambda</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> t: </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.point.x </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">+</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.direction.x </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">*</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> t, </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">lambda</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> t: </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.point.y </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">+</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.direction.y </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">*</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> t, </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">lambda</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> t: </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.point.z </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">+</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.direction.z </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">*</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> t)</span></span></code></pre></div></details><h4 id="def-is-approx-parallel-self-other-line3-epsilon-float-1e-06-bool" tabindex="-1"><em><strong>def</strong></em> <code>is_approx_parallel(self, other: Line3, epsilon: float = 1e-06) -&gt; bool</code> <a class="header-anchor" href="#def-is-approx-parallel-self-other-line3-epsilon-float-1e-06-bool" aria-label="Permalink to &quot;***def*** `is_approx_parallel(self, other: Line3, epsilon: float = 1e-06) -&gt; bool`&quot;"></a></h4><p><strong>Description</strong>: 判断两条直线是否近似平行。</p><p><strong>Arguments</strong>:</p><blockquote><ul><li>other: 另一条直线</li><li>epsilon: 误差</li></ul></blockquote><p><strong>Return</strong>: 是否近似平行</p><details><summary><b>Source code</b> or <a href="https://github.com/snowykami/mbcp/tree/main/mbcp/mp_math/line.py#L131" target="_blank">View on GitHub</a></summary><div class="language-python vp-adaptive-theme"><button title="Copy Code" class="copy"></button><span class="lang">python</span><pre class="shiki shiki-themes github-light github-dark vp-code" tabindex="0"><code><span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">def</span><span style="--shiki-light:#6F42C1;--shiki-dark:#B392F0;"> is_approx_parallel</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(self, other: </span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">&#39;Line3&#39;</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">, epsilon: </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">float</span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">1e-06</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">) -&gt; </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">bool</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> &quot;&quot;&quot;</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> 判断两条直线是否近似平行。</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> Args:</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> other: 另一条直线</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> epsilon: 误差</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> Returns:</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> 是否近似平行</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> &quot;&quot;&quot;</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.direction.is_approx_parallel(other.direction, epsilon)</span></span></code></pre></div></details><h4 id="def-is-parallel-self-other-line3-bool" tabindex="-1"><em><strong>def</strong></em> <code>is_parallel(self, other: Line3) -&gt; bool</code> <a class="header-anchor" href="#def-is-parallel-self-other-line3-bool" aria-label="Permalink to &quot;***def*** `is_parallel(self, other: Line3) -&gt; bool`&quot;"></a></h4><p><strong>Description</strong>: 判断两条直线是否平行。</p><p><strong>Arguments</strong>:</p><blockquote><ul><li>other: 另一条直线</li></ul></blockquote><p><strong>Return</strong>: 是否平行</p><details><summary><b>Source code</b> or <a href="https://github.com/snowykami/mbcp/tree/main/mbcp/mp_math/line.py#L142" target="_blank">View on GitHub</a></summary><div class="language-python vp-adaptive-theme"><button title="Copy Code" class="copy"></button><span class="lang">python</span><pre class="shiki shiki-themes github-light github-dark vp-code" tabindex="0"><code><span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">def</span><span style="--shiki-light:#6F42C1;--shiki-dark:#B392F0;"> is_parallel</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(self, other: </span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">&#39;Line3&#39;</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">) -&gt; </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">bool</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> &quot;&quot;&quot;</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> 判断两条直线是否平行。</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> Args:</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> other: 另一条直线</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> Returns:</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> 是否平行</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> &quot;&quot;&quot;</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.direction.is_parallel(other.direction)</span></span></code></pre></div></details><h4 id="def-is-collinear-self-other-line3-bool" tabindex="-1"><em><strong>def</strong></em> <code>is_collinear(self, other: Line3) -&gt; bool</code> <a class="header-anchor" href="#def-is-collinear-self-other-line3-bool" aria-label="Permalink to &quot;***def*** `is_collinear(self, other: Line3) -&gt; bool`&quot;"></a></h4><p><strong>Description</strong>: 判断两条直线是否共线。</p><p><strong>Arguments</strong>:</p><blockquote><ul><li>other: 另一条直线</li></ul></blockquote><p><strong>Return</strong>: 是否共线</p><details><summary><b>Source code</b> or <a href="https://github.com/snowykami/mbcp/tree/main/mbcp/mp_math/line.py#L152" target="_blank">View on GitHub</a></summary><div class="language-python vp-adaptive-theme"><button title="Copy Code" class="copy"></button><span class="lang">python</span><pre class="shiki shiki-themes github-light github-dark vp-code" tabindex="0"><code><span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">def</span><span style="--shiki-light:#6F42C1;--shiki-dark:#B392F0;"> is_collinear</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(self, other: </span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">&#39;Line3&#39;</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">) -&gt; </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">bool</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> &quot;&quot;&quot;</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> 判断两条直线是否共线。</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> Args:</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> other: 另一条直线</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> Returns:</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> 是否共线</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> &quot;&quot;&quot;</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.is_parallel(other) </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">and</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> (</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.point </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">-</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> other.point).is_parallel(</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.direction)</span></span></code></pre></div></details><h4 id="def-is-point-on-self-point-point3-bool" tabindex="-1"><em><strong>def</strong></em> <code>is_point_on(self, point: Point3) -&gt; bool</code> <a class="header-anchor" href="#def-is-point-on-self-point-point3-bool" aria-label="Permalink to &quot;***def*** `is_point_on(self, point: Point3) -&gt; bool`&quot;"></a></h4><p><strong>Description</strong>: 判断点是否在直线上。</p><p><strong>Arguments</strong>:</p><blockquote><ul><li>point: 点</li></ul></blockquote><p><strong>Return</strong>: 是否在直线上</p><details><summary><b>Source code</b> or <a href="https://github.com/snowykami/mbcp/tree/main/mbcp/mp_math/line.py#L162" target="_blank">View on GitHub</a></summary><div class="language-python vp-adaptive-theme"><button title="Copy Code" class="copy"></button><span class="lang">python</span><pre class="shiki shiki-themes github-light github-dark vp-code" tabindex="0"><code><span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">def</span><span style="--shiki-light:#6F42C1;--shiki-dark:#B392F0;"> is_point_on</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(self, point: </span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">&#39;Point3&#39;</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">) -&gt; </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">bool</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> &quot;&quot;&quot;</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> 判断点是否在直线上。</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> Args:</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> point: 点</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> Returns:</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> 是否在直线上</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> &quot;&quot;&quot;</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> (point </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">-</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.point).is_parallel(</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.direction)</span></span></code></pre></div></details><h4 id="def-is-coplanar-self-other-line3-bool" tabindex="-1"><em><strong>def</strong></em> <code>is_coplanar(self, other: Line3) -&gt; bool</code> <a class="header-anchor" href="#def-is-coplanar-self-other-line3-bool" aria-label="Permalink to &quot;***def*** `is_coplanar(self, other: Line3) -&gt; bool`&quot;"></a></h4><p><strong>Description</strong>: 判断两条直线是否共面。 充要条件两直线方向向量的叉乘与两直线上任意一点的向量的点积为0。</p><p><strong>Arguments</strong>:</p><blockquote><ul><li>other: 另一条直线</li></ul></blockquote><p><strong>Return</strong>: 是否共面</p><details><summary><b>Source code</b> or <a href="https://github.com/snowykami/mbcp/tree/main/mbcp/mp_math/line.py#L172" target="_blank">View on GitHub</a></summary><div class="language-python vp-adaptive-theme"><button title="Copy Code" class="copy"></button><span class="lang">python</span><pre class="shiki shiki-themes github-light github-dark vp-code" tabindex="0"><code><span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">def</span><span style="--shiki-light:#6F42C1;--shiki-dark:#B392F0;"> is_coplanar</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(self, other: </span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">&#39;Line3&#39;</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">) -&gt; </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">bool</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> &quot;&quot;&quot;</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> 判断两条直线是否共面。</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> 充要条件两直线方向向量的叉乘与两直线上任意一点的向量的点积为0。</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> Args:</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> other: 另一条直线</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> Returns:</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> 是否共面</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> &quot;&quot;&quot;</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.direction.cross(other.direction) </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">@</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> (</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.point </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">-</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> other.point) </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">==</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> 0</span></span></code></pre></div></details><h4 id="def-simplify-self" tabindex="-1"><em><strong>def</strong></em> <code>simplify(self)</code> <a class="header-anchor" href="#def-simplify-self" aria-label="Permalink to &quot;***def*** `simplify(self)`&quot;"></a></h4><p><strong>Description</strong>: 简化直线方程,等价相等。 自体简化,不返回值。</p><p>按照可行性一次对x y z 化 0 处理,并对向量单位化</p><details><summary><b>Source code</b> or <a href="https://github.com/snowykami/mbcp/tree/main/mbcp/mp_math/line.py#L183" target="_blank">View on GitHub</a></summary><div class="language-python vp-adaptive-theme"><button title="Copy Code" class="copy"></button><span class="lang">python</span><pre class="shiki shiki-themes github-light github-dark vp-code" tabindex="0"><code><span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">def</span><span style="--shiki-light:#6F42C1;--shiki-dark:#B392F0;"> simplify</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(self):</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> &quot;&quot;&quot;</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> 简化直线方程,等价相等。</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> 自体简化,不返回值。</span></span>
<span class="line"></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> 按照可行性一次对x y z 化 0 处理,并对向量单位化</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> &quot;&quot;&quot;</span></span>
<span class="line"><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.direction.normalize()</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> if</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.direction.x </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">==</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> 0</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>
<span class="line"><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.point.x </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> 0</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> if</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.direction.y </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">==</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> 0</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>
<span class="line"><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.point.y </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> 0</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> if</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.direction.z </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">==</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> 0</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>
<span class="line"><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.point.z </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> 0</span></span></code></pre></div></details><p><code>@classmethod</code></p><h4 id="def-from-two-points-cls-p1-point3-p2-point3-line3" tabindex="-1"><em><strong>def</strong></em> <code>from_two_points(cls, p1: Point3, p2: Point3) -&gt; Line3</code> <a class="header-anchor" href="#def-from-two-points-cls-p1-point3-p2-point3-line3" aria-label="Permalink to &quot;***def*** `from_two_points(cls, p1: Point3, p2: Point3) -&gt; Line3`&quot;"></a></h4><p><strong>Description</strong>: 工厂函数 由两点构造直线。</p><p><strong>Arguments</strong>:</p><blockquote><ul><li>p1: 点1</li><li>p2: 点2</li></ul></blockquote><p><strong>Return</strong>: 直线</p><details><summary><b>Source code</b> or <a href="https://github.com/snowykami/mbcp/tree/main/mbcp/mp_math/line.py#L202" target="_blank">View on GitHub</a></summary><div class="language-python vp-adaptive-theme"><button title="Copy Code" class="copy"></button><span class="lang">python</span><pre class="shiki shiki-themes github-light github-dark vp-code" tabindex="0"><code><span class="line"><span style="--shiki-light:#6F42C1;--shiki-dark:#B392F0;">@</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">classmethod</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">def</span><span style="--shiki-light:#6F42C1;--shiki-dark:#B392F0;"> from_two_points</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(cls, p1: </span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">&#39;Point3&#39;</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">, p2: </span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">&#39;Point3&#39;</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">) -&gt; </span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">&#39;Line3&#39;</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> &quot;&quot;&quot;</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> 工厂函数 由两点构造直线。</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> Args:</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> p1: 点1</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> p2: 点2</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> Returns:</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> 直线</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> &quot;&quot;&quot;</span></span>
<span class="line"><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> direction </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">=</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> p2 </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">-</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> p1</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> cls</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(p1, direction)</span></span></code></pre></div></details><h4 id="def-and-self-other-line3-line3-point3-none" tabindex="-1"><em><strong>def</strong></em> <code>__and__(self, other: Line3) -&gt; Line3 | Point3 | None</code> <a class="header-anchor" href="#def-and-self-other-line3-line3-point3-none" aria-label="Permalink to &quot;***def*** `__and__(self, other: Line3) -&gt; Line3 | Point3 | None`&quot;"></a></h4><p><strong>Description</strong>: 计算两条直线点集合的交集。重合线返回自身平行线返回None交线返回交点。</p><p><strong>Arguments</strong>:</p><blockquote><ul><li>other: 另一条直线</li></ul></blockquote><p><strong>Return</strong>: 交点</p><details><summary><b>Source code</b> or <a href="https://github.com/snowykami/mbcp/tree/main/mbcp/mp_math/line.py#L214" target="_blank">View on GitHub</a></summary><div class="language-python vp-adaptive-theme"><button title="Copy Code" class="copy"></button><span class="lang">python</span><pre class="shiki shiki-themes github-light github-dark vp-code" tabindex="0"><code><span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">def</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> __and__</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(self, other: </span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">&#39;Line3&#39;</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">) -&gt; </span><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;">&#39;Line3 | Point3 | None&#39;</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> &quot;&quot;&quot;</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> 计算两条直线点集合的交集。重合线返回自身平行线返回None交线返回交点。</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> Args:</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> other: 另一条直线</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> Returns:</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> 交点</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> &quot;&quot;&quot;</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> if</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.is_collinear(other):</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> elif</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.is_parallel(other) </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">or</span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> not</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.is_coplanar(other):</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> None</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> else</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.cal_intersection(other)</span></span></code></pre></div></details><h4 id="def-eq-self-other-bool" tabindex="-1"><em><strong>def</strong></em> <code>__eq__(self, other) -&gt; bool</code> <a class="header-anchor" href="#def-eq-self-other-bool" aria-label="Permalink to &quot;***def*** `__eq__(self, other) -&gt; bool`&quot;"></a></h4><p><strong>Description</strong>: 判断两条直线是否等价。</p><p>v1 // v2 ∧ (p1 - p2) // v1</p><p><strong>Arguments</strong>:</p><blockquote><ul><li>other:</li></ul></blockquote><details><summary><b>Source code</b> or <a href="https://github.com/snowykami/mbcp/tree/main/mbcp/mp_math/line.py#L229" target="_blank">View on GitHub</a></summary><div class="language-python vp-adaptive-theme"><button title="Copy Code" class="copy"></button><span class="lang">python</span><pre class="shiki shiki-themes github-light github-dark vp-code" tabindex="0"><code><span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">def</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> __eq__</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">(self, other) -&gt; </span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">bool</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">:</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> &quot;&quot;&quot;</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> 判断两条直线是否等价。</span></span>
<span class="line"></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> v1 // v2 ∧ (p1 - p2) // v1</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> Args:</span></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> other:</span></span>
<span class="line"></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> Returns:</span></span>
<span class="line"></span>
<span class="line"><span style="--shiki-light:#032F62;--shiki-dark:#9ECBFF;"> &quot;&quot;&quot;</span></span>
<span class="line"><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;"> return</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;"> self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.direction.is_parallel(other.direction) </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">and</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> (</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.point </span><span style="--shiki-light:#D73A49;--shiki-dark:#F97583;">-</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;"> other.point).is_parallel(</span><span style="--shiki-light:#005CC5;--shiki-dark:#79B8FF;">self</span><span style="--shiki-light:#24292E;--shiki-dark:#E1E4E8;">.direction)</span></span></code></pre></div></details></div></div></main><footer class="VPDocFooter" data-v-40342069 data-v-a4b38bd6><!--[--><!--]--><!----><nav class="prev-next" aria-labelledby="doc-footer-aria-label" data-v-a4b38bd6><span class="visually-hidden" id="doc-footer-aria-label" data-v-a4b38bd6>Pager</span><div class="pager" data-v-a4b38bd6><a class="VPLink link pager-link prev" href="/en/api/mp_math/" data-v-a4b38bd6><!--[--><span class="desc" data-v-a4b38bd6>Prev Page</span><span class="title" data-v-a4b38bd6>mbcp.mp_math</span><!--]--></a></div><div class="pager" data-v-a4b38bd6><a class="VPLink link pager-link next" href="/en/api/mp_math/mp_math_typing.html" data-v-a4b38bd6><!--[--><span class="desc" data-v-a4b38bd6>Next Page</span><span class="title" data-v-a4b38bd6>mbcp.mp_math.mp_math_typing</span><!--]--></a></div></nav></footer><!--[--><!--]--></div></div></div><!--[--><!--]--></div></div><footer class="VPFooter has-sidebar" data-v-22f859ac data-v-e3ca6860><div class="container" data-v-e3ca6860><p class="message" data-v-e3ca6860>Documentation built with <a href="https://vitepress.dev/">VitePress</a> | API references generated by <a href="https://github.com/LiteyukiStudio/litedoc">litedoc</a></p><p class="copyright" data-v-e3ca6860>Copyright (C) 2020-2024 SnowyKami. All Rights Reserved</p></div></footer><!--[--><!--]--></div></div>
<script>window.__VP_HASH_MAP__=JSON.parse("{\"api_api.md\":\"D_B0Hlcp\",\"api_index.md\":\"C_wESrrY\",\"api_mp_math_angle.md\":\"C-N73CgT\",\"api_mp_math_const.md\":\"BAf8mK4W\",\"api_mp_math_equation.md\":\"Cp31USqa\",\"api_mp_math_function.md\":\"DIC1Ry3F\",\"api_mp_math_index.md\":\"BNf7bQqL\",\"api_mp_math_line.md\":\"CtD6lWPK\",\"api_mp_math_mp_math.md\":\"GlFMkWiQ\",\"api_mp_math_mp_math_typing.md\":\"DlnJmkos\",\"api_mp_math_plane.md\":\"ad6doatt\",\"api_mp_math_point.md\":\"BY0HIcUa\",\"api_mp_math_segment.md\":\"CmG5SWCe\",\"api_mp_math_utils.md\":\"CAI5jzaB\",\"api_mp_math_vector.md\":\"BnKft09t\",\"api_particle_index.md\":\"Cm3Vk-es\",\"api_particle_particle.md\":\"yD6tcNSr\",\"api_presets_index.md\":\"CD62I2gv\",\"api_presets_model_index.md\":\"CxTdQozZ\",\"api_presets_model_model.md\":\"C5hmcIxj\",\"api_presets_presets.md\":\"4R0VRbQo\",\"demo_index.md\":\"D-H9zRUE\",\"en_api_api.md\":\"BSgrCX1d\",\"en_api_index.md\":\"Dj_5nFTt\",\"en_api_mp_math_angle.md\":\"Dgb5qA7e\",\"en_api_mp_math_const.md\":\"gGpXUShq\",\"en_api_mp_math_equation.md\":\"BNTh5S3G\",\"en_api_mp_math_function.md\":\"CKbXJNVH\",\"en_api_mp_math_index.md\":\"BEjLBMpH\",\"en_api_mp_math_line.md\":\"BkGvfNB7\",\"en_api_mp_math_mp_math.md\":\"D6ihYPav\",\"en_api_mp_math_mp_math_typing.md\":\"Dnl2aJQ4\",\"en_api_mp_math_plane.md\":\"IO0Boeqk\",\"en_api_mp_math_point.md\":\"BfLB2Pov\",\"en_api_mp_math_segment.md\":\"4UlH6aD-\",\"en_api_mp_math_utils.md\":\"a8Vzn8__\",\"en_api_mp_math_vector.md\":\"CG9JbG4z\",\"en_api_particle_index.md\":\"BfyNQiRg\",\"en_api_particle_particle.md\":\"BNkfEyJn\",\"en_api_presets_index.md\":\"BWb2fpTg\",\"en_api_presets_model_index.md\":\"DIdYh3vo\",\"en_api_presets_model_model.md\":\"Dp27PGgh\",\"en_api_presets_presets.md\":\"CCUzsYog\",\"en_guide_index.md\":\"DrDHTYCZ\",\"en_index.md\":\"BSTSOH39\",\"en_refer_index.md\":\"alw4L-bp\",\"guide_index.md\":\"Cfmzk2IH\",\"index.md\":\"CNF8LJa0\",\"ja_api_api.md\":\"CPz58qIw\",\"ja_api_index.md\":\"CnUeuifx\",\"ja_api_mp_math_angle.md\":\"R64H2-ob\",\"ja_api_mp_math_const.md\":\"DGXAgDfn\",\"ja_api_mp_math_equation.md\":\"bBbnLveW\",\"ja_api_mp_math_function.md\":\"KS50DwZu\",\"ja_api_mp_math_index.md\":\"CTZZ-p9Z\",\"ja_api_mp_math_line.md\":\"B3oNfIkI\",\"ja_api_mp_math_mp_math.md\":\"D-prC0UO\",\"ja_api_mp_math_mp_math_typing.md\":\"BNymgrCT\",\"ja_api_mp_math_plane.md\":\"DFKYhl6m\",\"ja_api_mp_math_point.md\":\"CQIfQely\",\"ja_api_mp_math_segment.md\":\"y5HJ_Cqz\",\"ja_api_mp_math_utils.md\":\"RNFMo8bK\",\"ja_api_mp_math_vector.md\":\"NRH_z6Ha\",\"ja_api_particle_index.md\":\"Jr41Y3TS\",\"ja_api_particle_particle.md\":\"exTt46pq\",\"ja_api_presets_index.md\":\"CQqdQbIZ\",\"ja_api_presets_model_index.md\":\"CubDnh2b\",\"ja_api_presets_model_model.md\":\"Dqxl5NOT\",\"ja_api_presets_presets.md\":\"DwzXdDqR\",\"ja_guide_index.md\":\"BxGnZYwR\",\"ja_index.md\":\"DCWiTENz\",\"ja_refer_index.md\":\"CODW6iMX\",\"refer_function_curry.md\":\"DwKZawp5\",\"refer_function_function.md\":\"D3IgfZX2\",\"refer_index.md\":\"CczYTl3j\",\"zht_api_api.md\":\"DyUSHA0S\",\"zht_api_index.md\":\"CgZH6aHQ\",\"zht_api_mp_math_angle.md\":\"UUc3s3KL\",\"zht_api_mp_math_const.md\":\"xwQvuYck\",\"zht_api_mp_math_equation.md\":\"DkZNMC3t\",\"zht_api_mp_math_function.md\":\"CYwI6A0a\",\"zht_api_mp_math_index.md\":\"mmeMMriu\",\"zht_api_mp_math_line.md\":\"ByORXAGU\",\"zht_api_mp_math_mp_math.md\":\"C302rxKc\",\"zht_api_mp_math_mp_math_typing.md\":\"CNiSnuMw\",\"zht_api_mp_math_plane.md\":\"DL8PMQ01\",\"zht_api_mp_math_point.md\":\"FCf8N9tu\",\"zht_api_mp_math_segment.md\":\"B62sPC-7\",\"zht_api_mp_math_utils.md\":\"es0XyXO5\",\"zht_api_mp_math_vector.md\":\"8hzEA9LV\",\"zht_api_particle_index.md\":\"8GaGB1ul\",\"zht_api_particle_particle.md\":\"huuRTEb9\",\"zht_api_presets_index.md\":\"DvOViSox\",\"zht_api_presets_model_index.md\":\"C7QkAD_l\",\"zht_api_presets_model_model.md\":\"aGdpVmbK\",\"zht_api_presets_presets.md\":\"CsDHjRbK\",\"zht_guide_index.md\":\"CsuFVFxu\",\"zht_index.md\":\"VMjJ0lpj\",\"zht_refer_index.md\":\"Bz6voxEQ\"}");function deserializeFunctions(r){return Array.isArray(r)
</body>
</html>