mbcp/main.py

154 lines
5.1 KiB
Python
Raw Normal View History

2024-08-06 18:02:51 +08:00
# -*- coding: utf-8 -*-
"""
Copyright (C) 2020-2024 LiteyukiStudio. All Rights Reserved
@Time : 2024/8/6 下午1:30
@Author : snowykami
@Email : snowykami@outlook.com
@File : main.py
@Software: PyCharm
2024-08-27 09:08:27 +08:00
"""
import logging
from mbcp.mp_math.line import Line3
from mbcp.mp_math.plane import Plane3
from mbcp.mp_math.point import Point3
# def ac8s4e4():
# """
# 第八章第四节例4
# 问题求与两平面x-4z-3=0和2x-y-5z-1=0的交线平行且过点(-3, 2, 5)的直线方程。
# """
# correct_ans = Line3(4, 3, 1, 1)
#
# pl1 = Plane3(1, 0, -4, -3)
# pl2 = Plane3(2, -1, -5, -1)
# p = Point3(-3, 2, 5)
# """解法1"""
# # 求直线方向向量s
# s = pl1.normal @ pl2.normal
# actual_ans = Line3.from_point_and_direction(p, s)
#
# logging.info(f"正确答案:{correct_ans} 实际答案:{actual_ans}")
# assert actual_ans == correct_ans
#
# """解法2"""
# # 过点p且与pl1平行的平面pl3
# pl3 = pl1.cal_parallel_plane3(p)
# # 过点p且与pl2平行的平面pl4
# pl4 = pl2.cal_parallel_plane3(p)
# # 求pl3和pl4的交线
# actual_ans = pl3.cal_intersection_line3(pl4)
# print(pl3, pl4, actual_ans)
#
# logging.info(f"正确答案:{correct_ans} 实际答案:{actual_ans}")
# assert actual_ans == correct_ans
#
#
# ac8s4e4()
import logging
from mbcp.mp_math.mp_math_typing import RealNumber
from mbcp.mp_math.utils import Approx
def three_var_func(x: RealNumber, y: RealNumber) -> RealNumber:
return x ** 3 * y ** 2 - 3 * x * y ** 3 - x * y + 1
class TestPartialDerivative:
# 样例来源:同济大学《高等数学》第八版下册 第九章第二节 例6
def test_2v_1o_1v(self):
"""测试二元函数关于第一个变量(x)的一阶偏导 df/dx"""
from mbcp.mp_math.utils import Approx
from mbcp.mp_math.equation import get_partial_derivative_func
partial_derivative_func = get_partial_derivative_func(three_var_func, 0)
# assert partial_derivative_func(1, 2, 3) == 4.0
def df_dx(x, y):
"""原函数关于x的偏导"""
return 3 * (x ** 2) * (y ** 2) - 3 * (y ** 3) - y
logging.info(f"Expected: {df_dx(1, 2)}, Actual: {partial_derivative_func(1, 2)}")
assert Approx(partial_derivative_func(1, 2)) == df_dx(1, 2)
def test_2v_1o_2v(self):
"""测试二元函数关于第二个变量(y)的一阶偏导 df/dy"""
from mbcp.mp_math.utils import Approx
from mbcp.mp_math.equation import get_partial_derivative_func
partial_derivative_func = get_partial_derivative_func(three_var_func, 1)
def df_dy(x, y):
"""原函数关于y的偏导"""
return 2 * (x ** 3) * y - 9 * x * (y ** 2) - x
logging.info(f"Expected: {df_dy(1, 2)}, Actual: {partial_derivative_func(1, 2)}")
assert Approx(partial_derivative_func(1, 2)) == df_dy(1, 2)
def test_2v_2o_12v(self):
"""高阶偏导d^2f/(dxdy)"""
from mbcp.mp_math.utils import Approx
from mbcp.mp_math.equation import get_partial_derivative_func
partial_derivative_func = get_partial_derivative_func(three_var_func, (0, 1))
def df_dxdy(x, y):
"""原函数关于y和x的偏导"""
return 6 * x ** 2 * y - 9 * y ** 2 - 1
logging.info(f"Expected: {df_dxdy(1, 2)}, Actual: {partial_derivative_func(1, 2)}")
assert Approx(partial_derivative_func(1, 2)) == df_dxdy(1, 2)
def test_2v_2o_1v2(self):
"""二阶偏导d^2f/(dx^2)"""
from mbcp.mp_math.utils import Approx
from mbcp.mp_math.equation import get_partial_derivative_func
partial_derivative_func = get_partial_derivative_func(three_var_func, (0, 0))
def df_dydx(x, y):
"""原函数关于x和y的偏导"""
return 6 * x * y ** 2
logging.info(f"Expected: {df_dydx(1, 2)}, Actual: {partial_derivative_func(1, 2)}")
assert Approx(partial_derivative_func(1, 2)) == df_dydx(1, 2)
def test_2v_3o_1v3(self):
"""高阶偏导d^3f/(dx^3)"""
from mbcp.mp_math.utils import Approx
from mbcp.mp_math.equation import get_partial_derivative_func
partial_derivative_func = get_partial_derivative_func(three_var_func, (0, 0, 0))
def d3f_dx3(x, y):
"""原函数关于x的三阶偏导"""
return 6 * (y ** 2)
logging.info(f"Expected: {d3f_dx3(1, 2)}, Actual: {partial_derivative_func(1, 2)}")
assert Approx(partial_derivative_func(1, 2)) == d3f_dx3(1, 2)
def test_possible_error(self):
from mbcp.mp_math.equation import get_partial_derivative_func
def two_vars_func(x: RealNumber, y: RealNumber) -> RealNumber:
return x ** 2 * y ** 2
partial_func = get_partial_derivative_func(two_vars_func, 0)
partial_func_2 = get_partial_derivative_func(two_vars_func, (0, 0))
assert Approx(partial_func_2(1, 2)) == 8
TestPartialDerivative().test_2v_1o_1v()
TestPartialDerivative().test_2v_1o_2v()
TestPartialDerivative().test_2v_2o_12v()
TestPartialDerivative().test_2v_2o_1v2()
TestPartialDerivative().test_2v_3o_1v3()
TestPartialDerivative().test_possible_error()