mirror of
https://github.com/snowykami/mbcp.git
synced 2024-11-30 00:54:57 +08:00
163 lines
3.5 KiB
Markdown
163 lines
3.5 KiB
Markdown
|
---
|
|||
|
title: mbcp.mp_math.equation
|
|||
|
---
|
|||
|
### *func* `get_partial_derivative_func(func: MultiVarsFunc = EPSILON) -> MultiVarsFunc`
|
|||
|
|
|||
|
|
|||
|
求N元函数一阶偏导函数。这玩意不太稳定,慎用。
|
|||
|
|
|||
|
**Arguments**:
|
|||
|
|
|||
|
- func: 函数
|
|||
|
|
|||
|
- var: 变量位置,可为整数(一阶偏导)或整数元组(高阶偏导)
|
|||
|
|
|||
|
- epsilon: 偏移量
|
|||
|
|
|||
|
**Return**:
|
|||
|
|
|||
|
- 偏导函数
|
|||
|
|
|||
|
**Raises**:
|
|||
|
|
|||
|
- ValueError 无效变量类型
|
|||
|
|
|||
|
|
|||
|
|
|||
|
<details>
|
|||
|
<summary> <i>Source code</i> </summary>
|
|||
|
|
|||
|
```python
|
|||
|
def get_partial_derivative_func(func: MultiVarsFunc, var: int | tuple[int, ...], epsilon: Number=EPSILON) -> MultiVarsFunc:
|
|||
|
"""
|
|||
|
求N元函数一阶偏导函数。这玩意不太稳定,慎用。
|
|||
|
Args:
|
|||
|
func: 函数
|
|||
|
var: 变量位置,可为整数(一阶偏导)或整数元组(高阶偏导)
|
|||
|
epsilon: 偏移量
|
|||
|
Returns:
|
|||
|
偏导函数
|
|||
|
Raises:
|
|||
|
ValueError: 无效变量类型
|
|||
|
"""
|
|||
|
if isinstance(var, int):
|
|||
|
|
|||
|
def partial_derivative_func(*args: Var) -> Var:
|
|||
|
args_list_plus = list(args)
|
|||
|
args_list_plus[var] += epsilon
|
|||
|
args_list_minus = list(args)
|
|||
|
args_list_minus[var] -= epsilon
|
|||
|
return (func(*args_list_plus) - func(*args_list_minus)) / (2 * epsilon)
|
|||
|
return partial_derivative_func
|
|||
|
elif isinstance(var, tuple):
|
|||
|
|
|||
|
def high_order_partial_derivative_func(*args: Var) -> Var:
|
|||
|
result_func = func
|
|||
|
for v in var:
|
|||
|
result_func = get_partial_derivative_func(result_func, v, epsilon)
|
|||
|
return result_func(*args)
|
|||
|
return high_order_partial_derivative_func
|
|||
|
else:
|
|||
|
raise ValueError('Invalid var type')
|
|||
|
```
|
|||
|
</details>
|
|||
|
|
|||
|
### *func* `partial_derivative_func() -> Var`
|
|||
|
|
|||
|
|
|||
|
<details>
|
|||
|
<summary> <i>Source code</i> </summary>
|
|||
|
|
|||
|
```python
|
|||
|
def partial_derivative_func(*args: Var) -> Var:
|
|||
|
args_list_plus = list(args)
|
|||
|
args_list_plus[var] += epsilon
|
|||
|
args_list_minus = list(args)
|
|||
|
args_list_minus[var] -= epsilon
|
|||
|
return (func(*args_list_plus) - func(*args_list_minus)) / (2 * epsilon)
|
|||
|
```
|
|||
|
</details>
|
|||
|
|
|||
|
### *func* `high_order_partial_derivative_func() -> Var`
|
|||
|
|
|||
|
|
|||
|
<details>
|
|||
|
<summary> <i>Source code</i> </summary>
|
|||
|
|
|||
|
```python
|
|||
|
def high_order_partial_derivative_func(*args: Var) -> Var:
|
|||
|
result_func = func
|
|||
|
for v in var:
|
|||
|
result_func = get_partial_derivative_func(result_func, v, epsilon)
|
|||
|
return result_func(*args)
|
|||
|
```
|
|||
|
</details>
|
|||
|
|
|||
|
### **class** `CurveEquation`
|
|||
|
### *method* `__init__(self, x_func: OneVarFunc, y_func: OneVarFunc, z_func: OneVarFunc)`
|
|||
|
|
|||
|
|
|||
|
曲线方程。
|
|||
|
|
|||
|
**Arguments**:
|
|||
|
|
|||
|
- x_func: x函数
|
|||
|
|
|||
|
- y_func: y函数
|
|||
|
|
|||
|
- z_func: z函数
|
|||
|
|
|||
|
|
|||
|
|
|||
|
<details>
|
|||
|
<summary> <i>Source code</i> </summary>
|
|||
|
|
|||
|
```python
|
|||
|
def __init__(self, x_func: OneVarFunc, y_func: OneVarFunc, z_func: OneVarFunc):
|
|||
|
"""
|
|||
|
曲线方程。
|
|||
|
Args:
|
|||
|
x_func: x函数
|
|||
|
y_func: y函数
|
|||
|
z_func: z函数
|
|||
|
"""
|
|||
|
self.x_func = x_func
|
|||
|
self.y_func = y_func
|
|||
|
self.z_func = z_func
|
|||
|
```
|
|||
|
</details>
|
|||
|
|
|||
|
### *method* `__call__(self) -> Point3 | tuple[Point3, ...]`
|
|||
|
|
|||
|
|
|||
|
计算曲线上的点。
|
|||
|
|
|||
|
**Arguments**:
|
|||
|
|
|||
|
- *t:
|
|||
|
|
|||
|
- 参数:
|
|||
|
|
|||
|
|
|||
|
|
|||
|
<details>
|
|||
|
<summary> <i>Source code</i> </summary>
|
|||
|
|
|||
|
```python
|
|||
|
def __call__(self, *t: Var) -> Point3 | tuple[Point3, ...]:
|
|||
|
"""
|
|||
|
计算曲线上的点。
|
|||
|
Args:
|
|||
|
*t:
|
|||
|
参数
|
|||
|
Returns:
|
|||
|
|
|||
|
"""
|
|||
|
if len(t) == 1:
|
|||
|
return Point3(self.x_func(t[0]), self.y_func(t[0]), self.z_func(t[0]))
|
|||
|
else:
|
|||
|
return tuple([Point3(x, y, z) for x, y, z in zip(self.x_func(t), self.y_func(t), self.z_func(t))])
|
|||
|
```
|
|||
|
</details>
|
|||
|
|