nonebot2/nonebot/compat.py
2024-04-16 00:33:48 +08:00

381 lines
12 KiB
Python

"""本模块为 Pydantic 版本兼容层模块
为兼容 Pydantic V1 与 V2 版本,定义了一系列兼容函数与类供使用。
FrontMatter:
sidebar_position: 16
description: nonebot.compat 模块
"""
from collections.abc import Generator
from dataclasses import dataclass, is_dataclass
from typing_extensions import Self, get_args, get_origin, is_typeddict
from typing import (
TYPE_CHECKING,
Any,
Union,
TypeVar,
Callable,
Optional,
Protocol,
Annotated,
)
from pydantic import VERSION, BaseModel
from nonebot.typing import origin_is_annotated
T = TypeVar("T")
PYDANTIC_V2 = int(VERSION.split(".", 1)[0]) == 2
if TYPE_CHECKING:
class _CustomValidationClass(Protocol):
@classmethod
def __get_validators__(cls) -> Generator[Callable[..., Any], None, None]: ...
CVC = TypeVar("CVC", bound=_CustomValidationClass)
__all__ = (
"Required",
"PydanticUndefined",
"PydanticUndefinedType",
"ConfigDict",
"DEFAULT_CONFIG",
"FieldInfo",
"ModelField",
"extract_field_info",
"model_field_validate",
"model_fields",
"model_config",
"model_dump",
"type_validate_python",
"type_validate_json",
"custom_validation",
)
__autodoc__ = {
"PydanticUndefined": "Pydantic Undefined object",
"PydanticUndefinedType": "Pydantic Undefined type",
}
if PYDANTIC_V2: # pragma: pydantic-v2
from pydantic_core import CoreSchema, core_schema
from pydantic._internal._repr import display_as_type
from pydantic import TypeAdapter, GetCoreSchemaHandler
from pydantic.fields import FieldInfo as BaseFieldInfo
Required = Ellipsis
"""Alias of Ellipsis for compatibility with pydantic v1"""
# Export undefined type
from pydantic_core import PydanticUndefined as PydanticUndefined
from pydantic_core import PydanticUndefinedType as PydanticUndefinedType
# isort: split
# Export model config dict
from pydantic import ConfigDict as ConfigDict
DEFAULT_CONFIG = ConfigDict(extra="allow", arbitrary_types_allowed=True)
"""Default config for validations"""
class FieldInfo(BaseFieldInfo):
"""FieldInfo class with extra property for compatibility with pydantic v1"""
# make default can be positional argument
def __init__(self, default: Any = PydanticUndefined, **kwargs: Any) -> None:
super().__init__(default=default, **kwargs)
@property
def extra(self) -> dict[str, Any]:
"""Extra data that is not part of the standard pydantic fields.
For compatibility with pydantic v1.
"""
# extract extra data from attributes set except used slots
# we need to call super in advance due to
# comprehension not inlined in cpython < 3.12
# https://peps.python.org/pep-0709/
slots = super().__slots__
return {k: v for k, v in self._attributes_set.items() if k not in slots}
@dataclass
class ModelField:
"""ModelField class for compatibility with pydantic v1"""
name: str
"""The name of the field."""
annotation: Any
"""The annotation of the field."""
field_info: FieldInfo
"""The FieldInfo of the field."""
@classmethod
def _construct(cls, name: str, annotation: Any, field_info: FieldInfo) -> Self:
return cls(name, annotation, field_info)
@classmethod
def construct(
cls, name: str, annotation: Any, field_info: Optional[FieldInfo] = None
) -> Self:
"""Construct a ModelField from given infos."""
return cls._construct(name, annotation, field_info or FieldInfo())
def _annotation_has_config(self) -> bool:
"""Check if the annotation has config.
TypeAdapter raise error when annotation has config
and given config is not None.
"""
type_is_annotated = origin_is_annotated(get_origin(self.annotation))
inner_type = (
get_args(self.annotation)[0] if type_is_annotated else self.annotation
)
try:
return (
issubclass(inner_type, BaseModel)
or is_dataclass(inner_type)
or is_typeddict(inner_type)
)
except TypeError:
return False
def get_default(self) -> Any:
"""Get the default value of the field."""
return self.field_info.get_default(call_default_factory=True)
def _type_display(self):
"""Get the display of the type of the field."""
return display_as_type(self.annotation)
def __hash__(self) -> int:
# Each ModelField is unique for our purposes,
# to allow store them in a set.
return id(self)
def extract_field_info(field_info: BaseFieldInfo) -> dict[str, Any]:
"""Get FieldInfo init kwargs from a FieldInfo instance."""
kwargs = field_info._attributes_set.copy()
kwargs["annotation"] = field_info.rebuild_annotation()
return kwargs
def model_field_validate(
model_field: ModelField, value: Any, config: Optional[ConfigDict] = None
) -> Any:
"""Validate the value pass to the field."""
type: Any = Annotated[model_field.annotation, model_field.field_info]
return TypeAdapter(
type, config=None if model_field._annotation_has_config() else config
).validate_python(value)
def model_fields(model: type[BaseModel]) -> list[ModelField]:
"""Get field list of a model."""
return [
ModelField._construct(
name=name,
annotation=field_info.rebuild_annotation(),
field_info=FieldInfo(**extract_field_info(field_info)),
)
for name, field_info in model.model_fields.items()
]
def model_config(model: type[BaseModel]) -> Any:
"""Get config of a model."""
return model.model_config
def model_dump(
model: BaseModel,
include: Optional[set[str]] = None,
exclude: Optional[set[str]] = None,
by_alias: bool = False,
exclude_unset: bool = False,
exclude_defaults: bool = False,
exclude_none: bool = False,
) -> dict[str, Any]:
return model.model_dump(
include=include,
exclude=exclude,
by_alias=by_alias,
exclude_unset=exclude_unset,
exclude_defaults=exclude_defaults,
exclude_none=exclude_none,
)
def type_validate_python(type_: type[T], data: Any) -> T:
"""Validate data with given type."""
return TypeAdapter(type_).validate_python(data)
def type_validate_json(type_: type[T], data: Union[str, bytes]) -> T:
"""Validate JSON with given type."""
return TypeAdapter(type_).validate_json(data)
def __get_pydantic_core_schema__(
cls: type["_CustomValidationClass"],
source_type: Any,
handler: GetCoreSchemaHandler,
) -> CoreSchema:
validators = list(cls.__get_validators__())
if len(validators) == 1:
return core_schema.no_info_plain_validator_function(validators[0])
return core_schema.chain_schema(
[core_schema.no_info_plain_validator_function(func) for func in validators]
)
def custom_validation(class_: type["CVC"]) -> type["CVC"]:
"""Use pydantic v1 like validator generator in pydantic v2"""
setattr(
class_,
"__get_pydantic_core_schema__",
classmethod(__get_pydantic_core_schema__),
)
return class_
else: # pragma: pydantic-v1
from pydantic import Extra
from pydantic import parse_obj_as, parse_raw_as
from pydantic import BaseConfig as PydanticConfig
from pydantic.fields import FieldInfo as BaseFieldInfo
from pydantic.fields import ModelField as BaseModelField
from pydantic.schema import get_annotation_from_field_info
# isort: split
from pydantic.fields import Required as Required
# isort: split
from pydantic.fields import Undefined as PydanticUndefined
from pydantic.fields import UndefinedType as PydanticUndefinedType
class ConfigDict(PydanticConfig):
"""Config class that allow get value with default value."""
@classmethod
def get(cls, field: str, default: Any = None) -> Any:
"""Get a config value."""
return getattr(cls, field, default)
class DEFAULT_CONFIG(ConfigDict):
extra = Extra.allow
arbitrary_types_allowed = True
class FieldInfo(BaseFieldInfo):
def __init__(self, default: Any = PydanticUndefined, **kwargs: Any):
# preprocess default value to make it compatible with pydantic v2
# when default is Required, set it to PydanticUndefined
if default is Required:
default = PydanticUndefined
super().__init__(default, **kwargs)
class ModelField(BaseModelField):
@classmethod
def _construct(cls, name: str, annotation: Any, field_info: FieldInfo) -> Self:
return cls(
name=name,
type_=annotation,
class_validators=None,
model_config=DEFAULT_CONFIG,
default=field_info.default,
default_factory=field_info.default_factory,
required=(
field_info.default is PydanticUndefined
and field_info.default_factory is None
),
field_info=field_info,
)
@classmethod
def construct(
cls, name: str, annotation: Any, field_info: Optional[FieldInfo] = None
) -> Self:
"""Construct a ModelField from given infos.
Field annotation is preprocessed with field_info.
"""
if field_info is not None:
annotation = get_annotation_from_field_info(
annotation, field_info, name
)
return cls._construct(name, annotation, field_info or FieldInfo())
def extract_field_info(field_info: BaseFieldInfo) -> dict[str, Any]:
"""Get FieldInfo init kwargs from a FieldInfo instance."""
kwargs = {
s: getattr(field_info, s) for s in field_info.__slots__ if s != "extra"
}
kwargs.update(field_info.extra)
return kwargs
def model_field_validate(
model_field: ModelField, value: Any, config: Optional[type[ConfigDict]] = None
) -> Any:
"""Validate the value pass to the field.
Set config before validate to ensure validate correctly.
"""
if model_field.model_config is not config:
model_field.set_config(config or ConfigDict)
v, errs_ = model_field.validate(value, {}, loc=())
if errs_:
raise ValueError(value, model_field)
return v
def model_fields(model: type[BaseModel]) -> list[ModelField]:
"""Get field list of a model."""
# construct the model field without preprocess to avoid error
return [
ModelField._construct(
name=model_field.name,
annotation=model_field.annotation,
field_info=FieldInfo(
**extract_field_info(model_field.field_info),
),
)
for model_field in model.__fields__.values()
]
def model_config(model: type[BaseModel]) -> Any:
"""Get config of a model."""
return model.__config__
def model_dump(
model: BaseModel,
include: Optional[set[str]] = None,
exclude: Optional[set[str]] = None,
by_alias: bool = False,
exclude_unset: bool = False,
exclude_defaults: bool = False,
exclude_none: bool = False,
) -> dict[str, Any]:
return model.dict(
include=include,
exclude=exclude,
by_alias=by_alias,
exclude_unset=exclude_unset,
exclude_defaults=exclude_defaults,
exclude_none=exclude_none,
)
def type_validate_python(type_: type[T], data: Any) -> T:
"""Validate data with given type."""
return parse_obj_as(type_, data)
def type_validate_json(type_: type[T], data: Union[str, bytes]) -> T:
"""Validate JSON with given type."""
return parse_raw_as(type_, data)
def custom_validation(class_: type["CVC"]) -> type["CVC"]:
"""Do nothing in pydantic v1"""
return class_