mirror of
https://github.com/nonebot/nonebot2.git
synced 2024-11-25 09:35:03 +08:00
159 lines
5.7 KiB
Python
159 lines
5.7 KiB
Python
import asyncio
|
||
import re
|
||
from typing import Iterable, Optional, Callable, Union, NamedTuple
|
||
|
||
from . import NoneBot, permission as perm
|
||
from .command import call_command
|
||
from .log import logger
|
||
from .message import Message
|
||
from .session import BaseSession
|
||
from .typing import Context_T, CommandName_T, CommandArgs_T
|
||
|
||
_nl_processors = set()
|
||
|
||
|
||
class NLProcessor:
|
||
__slots__ = ('func', 'keywords', 'permission',
|
||
'only_to_me', 'only_short_message',
|
||
'allow_empty_message')
|
||
|
||
def __init__(self, *, func: Callable, keywords: Optional[Iterable],
|
||
permission: int, only_to_me: bool, only_short_message: bool,
|
||
allow_empty_message: bool):
|
||
self.func = func
|
||
self.keywords = keywords
|
||
self.permission = permission
|
||
self.only_to_me = only_to_me
|
||
self.only_short_message = only_short_message
|
||
self.allow_empty_message = allow_empty_message
|
||
|
||
|
||
def on_natural_language(keywords: Union[Optional[Iterable], Callable] = None,
|
||
*, permission: int = perm.EVERYBODY,
|
||
only_to_me: bool = True,
|
||
only_short_message: bool = True,
|
||
allow_empty_message: bool = False) -> Callable:
|
||
"""
|
||
Decorator to register a function as a natural language processor.
|
||
|
||
:param keywords: keywords to respond to, if None, respond to all messages
|
||
:param permission: permission required by the processor
|
||
:param only_to_me: only handle messages to me
|
||
:param only_short_message: only handle short messages
|
||
:param allow_empty_message: handle empty messages
|
||
"""
|
||
|
||
def deco(func: Callable) -> Callable:
|
||
nl_processor = NLProcessor(func=func, keywords=keywords,
|
||
permission=permission,
|
||
only_to_me=only_to_me,
|
||
only_short_message=only_short_message,
|
||
allow_empty_message=allow_empty_message)
|
||
_nl_processors.add(nl_processor)
|
||
return func
|
||
|
||
if isinstance(keywords, Callable):
|
||
# here "keywords" is the function to be decorated
|
||
return on_natural_language()(keywords)
|
||
else:
|
||
return deco
|
||
|
||
|
||
class NLPSession(BaseSession):
|
||
__slots__ = ('msg', 'msg_text', 'msg_images')
|
||
|
||
def __init__(self, bot: NoneBot, ctx: Context_T, msg: str):
|
||
super().__init__(bot, ctx)
|
||
self.msg = msg
|
||
tmp_msg = Message(msg)
|
||
self.msg_text = tmp_msg.extract_plain_text()
|
||
self.msg_images = [s.data['url'] for s in tmp_msg
|
||
if s.type == 'image' and 'url' in s.data]
|
||
|
||
|
||
class NLPResult(NamedTuple):
|
||
confidence: float
|
||
cmd_name: Union[str, CommandName_T]
|
||
cmd_args: Optional[CommandArgs_T] = None
|
||
|
||
|
||
async def handle_natural_language(bot: NoneBot, ctx: Context_T) -> bool:
|
||
"""
|
||
Handle a message as natural language.
|
||
|
||
This function is typically called by "handle_message".
|
||
|
||
:param bot: NoneBot instance
|
||
:param ctx: message context
|
||
:return: the message is handled as natural language
|
||
"""
|
||
msg = str(ctx['message'])
|
||
if bot.config.NICKNAME:
|
||
# check if the user is calling me with my nickname
|
||
if isinstance(bot.config.NICKNAME, str) or \
|
||
not isinstance(bot.config.NICKNAME, Iterable):
|
||
nicknames = (bot.config.NICKNAME,)
|
||
else:
|
||
nicknames = filter(lambda n: n, bot.config.NICKNAME)
|
||
nickname_regex = '|'.join(nicknames)
|
||
m = re.search(rf'^({nickname_regex})([\s,,]|$)', msg, re.IGNORECASE)
|
||
if m:
|
||
nickname = m.group(1)
|
||
logger.debug(f'User is calling me {nickname}')
|
||
ctx['to_me'] = True
|
||
msg = msg[m.end():]
|
||
|
||
session = NLPSession(bot, ctx, msg)
|
||
|
||
# use msg_text here because CQ code "share" may be very long,
|
||
# at the same time some plugins may want to handle it
|
||
msg_text_length = len(session.msg_text)
|
||
|
||
futures = []
|
||
for p in _nl_processors:
|
||
if not p.allow_empty_message and not session.msg:
|
||
# don't allow empty msg, but it is one, so skip to next
|
||
continue
|
||
|
||
if p.only_short_message and \
|
||
msg_text_length > bot.config.SHORT_MESSAGE_MAX_LENGTH:
|
||
continue
|
||
|
||
if p.only_to_me and not ctx['to_me']:
|
||
continue
|
||
|
||
should_run = await perm.check_permission(bot, ctx, p.permission)
|
||
if should_run and p.keywords:
|
||
for kw in p.keywords:
|
||
if kw in session.msg_text:
|
||
break
|
||
else:
|
||
# no keyword matches
|
||
should_run = False
|
||
|
||
if should_run:
|
||
futures.append(asyncio.ensure_future(p.func(session)))
|
||
|
||
if futures:
|
||
# wait for possible results, and sort them by confidence
|
||
results = []
|
||
for fut in futures:
|
||
try:
|
||
results.append(await fut)
|
||
except Exception as e:
|
||
logger.error('An exception occurred while running '
|
||
'some natural language processor:')
|
||
logger.exception(e)
|
||
results = sorted(filter(lambda r: r, results),
|
||
key=lambda r: r.confidence, reverse=True)
|
||
logger.debug(f'NLP results: {results}')
|
||
if results and results[0].confidence >= 60.0:
|
||
# choose the result with highest confidence
|
||
logger.debug(f'NLP result with highest confidence: {results[0]}')
|
||
return await call_command(bot, ctx, results[0].cmd_name,
|
||
args=results[0].cmd_args,
|
||
check_perm=False)
|
||
else:
|
||
logger.debug('No NLP result having enough confidence')
|
||
return False
|