mirror of
https://github.com/nonebot/nonebot2.git
synced 2024-12-18 09:25:46 +08:00
171 lines
5.8 KiB
Python
171 lines
5.8 KiB
Python
import asyncio
|
|
from typing import Iterable, Optional, Callable, Union, NamedTuple
|
|
|
|
from . import NoneBot, permission as perm
|
|
from .command import call_command
|
|
from .log import logger
|
|
from .message import Message
|
|
from .session import BaseSession
|
|
from .typing import Context_T, CommandName_T, CommandArgs_T
|
|
|
|
_nl_processors = set()
|
|
|
|
|
|
class NLProcessor:
|
|
__slots__ = ('func', 'keywords', 'permission',
|
|
'only_to_me', 'only_short_message',
|
|
'allow_empty_message')
|
|
|
|
def __init__(self, *, func: Callable, keywords: Optional[Iterable],
|
|
permission: int, only_to_me: bool, only_short_message: bool,
|
|
allow_empty_message: bool):
|
|
self.func = func
|
|
self.keywords = keywords
|
|
self.permission = permission
|
|
self.only_to_me = only_to_me
|
|
self.only_short_message = only_short_message
|
|
self.allow_empty_message = allow_empty_message
|
|
|
|
|
|
def on_natural_language(keywords: Union[Optional[Iterable], Callable] = None,
|
|
*, permission: int = perm.EVERYBODY,
|
|
only_to_me: bool = True,
|
|
only_short_message: bool = True,
|
|
allow_empty_message: bool = False) -> Callable:
|
|
"""
|
|
Decorator to register a function as a natural language processor.
|
|
|
|
:param keywords: keywords to respond to, if None, respond to all messages
|
|
:param permission: permission required by the processor
|
|
:param only_to_me: only handle messages to me
|
|
:param only_short_message: only handle short messages
|
|
:param allow_empty_message: handle empty messages
|
|
"""
|
|
|
|
def deco(func: Callable) -> Callable:
|
|
nl_processor = NLProcessor(func=func, keywords=keywords,
|
|
permission=permission,
|
|
only_to_me=only_to_me,
|
|
only_short_message=only_short_message,
|
|
allow_empty_message=allow_empty_message)
|
|
_nl_processors.add(nl_processor)
|
|
return func
|
|
|
|
if isinstance(keywords, Callable):
|
|
# here "keywords" is the function to be decorated
|
|
return on_natural_language()(keywords)
|
|
else:
|
|
return deco
|
|
|
|
|
|
class NLPSession(BaseSession):
|
|
__slots__ = ('msg', 'msg_text', 'msg_images')
|
|
|
|
def __init__(self, bot: NoneBot, ctx: Context_T, msg: str):
|
|
super().__init__(bot, ctx)
|
|
self.msg = msg
|
|
tmp_msg = Message(msg)
|
|
self.msg_text = tmp_msg.extract_plain_text()
|
|
self.msg_images = [s.data['url'] for s in tmp_msg
|
|
if s.type == 'image' and 'url' in s.data]
|
|
|
|
|
|
class NLPResult(NamedTuple):
|
|
"""
|
|
Deprecated.
|
|
Use class IntentCommand instead.
|
|
"""
|
|
confidence: float
|
|
cmd_name: Union[str, CommandName_T]
|
|
cmd_args: Optional[CommandArgs_T] = None
|
|
|
|
def to_intent_command(self):
|
|
return IntentCommand(confidence=self.confidence,
|
|
name=self.cmd_name,
|
|
args=self.cmd_args)
|
|
|
|
|
|
class IntentCommand(NamedTuple):
|
|
"""
|
|
To represent a command that we think the user may be intended to call.
|
|
"""
|
|
confidence: float
|
|
name: Union[str, CommandName_T]
|
|
args: Optional[CommandArgs_T] = None
|
|
current_arg: str = ''
|
|
|
|
|
|
async def handle_natural_language(bot: NoneBot, ctx: Context_T) -> bool:
|
|
"""
|
|
Handle a message as natural language.
|
|
|
|
This function is typically called by "handle_message".
|
|
|
|
:param bot: NoneBot instance
|
|
:param ctx: message context
|
|
:return: the message is handled as natural language
|
|
"""
|
|
session = NLPSession(bot, ctx, str(ctx['message']))
|
|
|
|
# use msg_text here because CQ code "share" may be very long,
|
|
# at the same time some plugins may want to handle it
|
|
msg_text_length = len(session.msg_text)
|
|
|
|
futures = []
|
|
for p in _nl_processors:
|
|
if not p.allow_empty_message and not session.msg:
|
|
# don't allow empty msg, but it is one, so skip to next
|
|
continue
|
|
|
|
if p.only_short_message and \
|
|
msg_text_length > bot.config.SHORT_MESSAGE_MAX_LENGTH:
|
|
continue
|
|
|
|
if p.only_to_me and not ctx['to_me']:
|
|
continue
|
|
|
|
should_run = await perm.check_permission(bot, ctx, p.permission)
|
|
if should_run and p.keywords:
|
|
for kw in p.keywords:
|
|
if kw in session.msg_text:
|
|
break
|
|
else:
|
|
# no keyword matches
|
|
should_run = False
|
|
|
|
if should_run:
|
|
futures.append(asyncio.ensure_future(p.func(session)))
|
|
|
|
if futures:
|
|
# wait for intent commands, and sort them by confidence
|
|
intent_commands = []
|
|
for fut in futures:
|
|
try:
|
|
res = await fut
|
|
if isinstance(res, NLPResult):
|
|
intent_commands.append(res.to_intent_command())
|
|
elif isinstance(res, IntentCommand):
|
|
intent_commands.append(res)
|
|
except Exception as e:
|
|
logger.error('An exception occurred while running '
|
|
'some natural language processor:')
|
|
logger.exception(e)
|
|
|
|
intent_commands.sort(key=lambda ic: ic.confidence, reverse=True)
|
|
logger.debug(f'Intent commands: {intent_commands}')
|
|
|
|
if intent_commands and intent_commands[0].confidence >= 60.0:
|
|
# choose the intent command with highest confidence
|
|
chosen_cmd = intent_commands[0]
|
|
logger.debug(
|
|
f'Intent command with highest confidence: {chosen_cmd}')
|
|
return await call_command(
|
|
bot, ctx, chosen_cmd.name,
|
|
args=chosen_cmd.args,
|
|
current_arg=chosen_cmd.current_arg,
|
|
check_perm=False
|
|
)
|
|
else:
|
|
logger.debug('No intent command has enough confidence')
|
|
return False
|