from dataclasses import dataclass from typing import Annotated, Any, Optional from pydantic import BaseModel, ValidationError import pytest from nonebot.compat import ( DEFAULT_CONFIG, FieldInfo, PydanticUndefined, Required, TypeAdapter, custom_validation, model_dump, type_validate_json, type_validate_python, ) def test_default_config(): assert DEFAULT_CONFIG.get("extra") == "allow" assert DEFAULT_CONFIG.get("arbitrary_types_allowed") is True def test_field_info(): # required should be convert to PydanticUndefined assert FieldInfo(Required).default is PydanticUndefined # field info should allow extra attributes assert FieldInfo(test="test").extra["test"] == "test" def test_type_adapter(): t = TypeAdapter(Annotated[int, FieldInfo(ge=1)]) assert t.validate_python(2) == 2 with pytest.raises(ValidationError): t.validate_python(0) assert t.validate_json("2") == 2 with pytest.raises(ValidationError): t.validate_json("0") def test_model_dump(): class TestModel(BaseModel): test1: int test2: int assert model_dump(TestModel(test1=1, test2=2), include={"test1"}) == {"test1": 1} assert model_dump(TestModel(test1=1, test2=2), exclude={"test1"}) == {"test2": 2} def test_custom_validation(): called = [] @custom_validation @dataclass class TestModel: test: int @classmethod def __get_validators__(cls): yield cls._validate_1 yield cls._validate_2 @classmethod def _validate_1(cls, v: Any) -> Any: called.append(1) return v @classmethod def _validate_2(cls, v: Any) -> Any: called.append(2) return cls(test=v["test"]) assert type_validate_python(TestModel, {"test": 1}) == TestModel(test=1) assert called == [1, 2] def test_validate_json(): class TestModel(BaseModel): test1: int test2: str test3: bool test4: dict test5: list test6: Optional[int] assert type_validate_json( TestModel, "{" ' "test1": 1,' ' "test2": "2",' ' "test3": true,' ' "test4": {},' ' "test5": [],' ' "test6": null' "}", ) == TestModel(test1=1, test2="2", test3=True, test4={}, test5=[], test6=None)