mirror of
https://github.com/LiteyukiStudio/nonebot-plugin-marshoai.git
synced 2024-11-27 07:15:03 +08:00
149 lines
6.7 KiB
Python
149 lines
6.7 KiB
Python
from nonebot import on_command
|
||
from nonebot.adapters import Message
|
||
from nonebot.params import CommandArg
|
||
from nonebot.permission import SUPERUSER
|
||
from nonebot_plugin_alconna import on_alconna, MsgTarget
|
||
from nonebot_plugin_alconna.uniseg import UniMessage, UniMsg
|
||
from arclet.alconna import Alconna, Args, AllParam
|
||
from .util import *
|
||
import traceback
|
||
from azure.ai.inference.aio import ChatCompletionsClient
|
||
from azure.ai.inference.models import UserMessage, AssistantMessage, TextContentItem, ImageContentItem, ImageUrl, CompletionsFinishReason
|
||
from azure.core.credentials import AzureKeyCredential
|
||
from .__init__ import __plugin_meta__
|
||
from .config import config
|
||
from .models import MarshoContext
|
||
changemodel_cmd = on_command("changemodel",permission=SUPERUSER)
|
||
resetmem_cmd = on_command("reset")
|
||
#setprompt_cmd = on_command("prompt",permission=SUPERUSER)
|
||
praises_cmd = on_command("praises",permission=SUPERUSER)
|
||
add_usermsg_cmd = on_command("usermsg",permission=SUPERUSER)
|
||
add_assistantmsg_cmd = on_command("assistantmsg",permission=SUPERUSER)
|
||
contexts_cmd = on_command("contexts",permission=SUPERUSER)
|
||
save_context_cmd = on_command("savecontext",permission=SUPERUSER)
|
||
load_context_cmd = on_command("loadcontext",permission=SUPERUSER)
|
||
marsho_cmd = on_alconna(
|
||
Alconna(
|
||
"marsho",
|
||
Args["text?",AllParam],
|
||
)
|
||
)
|
||
model_name = config.marshoai_default_model
|
||
context = MarshoContext()
|
||
|
||
@add_usermsg_cmd.handle()
|
||
async def add_usermsg(target: MsgTarget, arg: Message = CommandArg()):
|
||
if msg := arg.extract_plain_text():
|
||
context.append(UserMessage(content=msg).as_dict(), target.id, target.private)
|
||
await add_usermsg_cmd.finish("已添加用户消息")
|
||
|
||
@add_assistantmsg_cmd.handle()
|
||
async def add_assistantmsg(target: MsgTarget, arg: Message = CommandArg()):
|
||
if msg := arg.extract_plain_text():
|
||
context.append(AssistantMessage(content=msg).as_dict(), target.id, target.private)
|
||
await add_assistantmsg_cmd.finish("已添加助手消息")
|
||
|
||
@praises_cmd.handle()
|
||
async def praises():
|
||
await UniMessage(build_praises()).send()
|
||
|
||
@contexts_cmd.handle()
|
||
async def contexts(target: MsgTarget):
|
||
await UniMessage(str(context.build(target.id, target.private)[1:])).send()
|
||
|
||
@save_context_cmd.handle()
|
||
async def save_context(target: MsgTarget, arg: Message = CommandArg()):
|
||
contexts = context.build(target.id, target.private)[1:]
|
||
if msg := arg.extract_plain_text():
|
||
await save_context_to_json(msg, contexts)
|
||
await save_context_cmd.finish("已保存上下文")
|
||
|
||
@load_context_cmd.handle()
|
||
async def load_context(target: MsgTarget, arg: Message = CommandArg()):
|
||
if msg := arg.extract_plain_text():
|
||
context.set_context(await load_context_from_json(msg), target.id, target.private)
|
||
await load_context_cmd.finish("已加载并覆盖上下文")
|
||
|
||
@resetmem_cmd.handle()
|
||
async def resetmem(target: MsgTarget):
|
||
context.reset(target.id, target.private)
|
||
await resetmem_cmd.finish("上下文已重置")
|
||
|
||
@changemodel_cmd.handle()
|
||
async def changemodel(arg : Message = CommandArg()):
|
||
global model_name
|
||
if model := arg.extract_plain_text():
|
||
model_name = model
|
||
await changemodel_cmd.finish("已切换")
|
||
|
||
@marsho_cmd.handle()
|
||
async def marsho(
|
||
target: MsgTarget,
|
||
message: UniMsg,
|
||
text = None
|
||
):
|
||
token = config.marshoai_token
|
||
endpoint = config.marshoai_azure_endpoint
|
||
#msg = await UniMessage.generate(message=message)
|
||
client = ChatCompletionsClient(
|
||
endpoint=endpoint,
|
||
credential=AzureKeyCredential(token),
|
||
)
|
||
if not text:
|
||
await UniMessage(
|
||
__plugin_meta__.usage+"\n当前使用的模型:"+model_name).send()
|
||
return
|
||
# await UniMessage(str(text)).send()
|
||
try:
|
||
is_support_image_model = model_name.lower() in config.marshoai_support_image_models
|
||
usermsg = [] if is_support_image_model else ""
|
||
marsho_string_removed = False
|
||
for i in message:
|
||
if i.type == "image":
|
||
if is_support_image_model:
|
||
imgurl = i.data["url"]
|
||
picmsg = ImageContentItem(
|
||
image_url=ImageUrl(url=str(await get_image_b64(imgurl)))
|
||
)
|
||
usermsg.append(picmsg)
|
||
else:
|
||
await UniMessage("*此模型不支持图片处理。").send()
|
||
elif i.type == "text":
|
||
if not marsho_string_removed:
|
||
# 去掉最前面的"marsho "字符串
|
||
clean_text = i.data["text"].lstrip("marsho ")
|
||
marsho_string_removed = True # 标记文本已处理
|
||
else:
|
||
clean_text = i.data["text"]
|
||
if is_support_image_model:
|
||
usermsg.append(TextContentItem(text=clean_text))
|
||
else:
|
||
usermsg += str(clean_text)
|
||
response = await client.complete(
|
||
messages=context.build(target.id, target.private)+[UserMessage(content=usermsg)],
|
||
model=model_name,
|
||
temperature=config.marshoai_temperature,
|
||
max_tokens=config.marshoai_max_tokens,
|
||
top_p=config.marshoai_top_p
|
||
)
|
||
#await UniMessage(str(response)).send()
|
||
choice = response.choices[0]
|
||
if choice["finish_reason"] == CompletionsFinishReason.STOPPED: # 当对话成功时,将dict的上下文添加到上下文类中
|
||
context.append(UserMessage(content=usermsg).as_dict(), target.id, target.private)
|
||
context.append(choice.message.as_dict(), target.id, target.private)
|
||
elif choice["finish_reason"] == CompletionsFinishReason.CONTENT_FILTERED:
|
||
await UniMessage("*已被内容过滤器过滤。*").send()
|
||
#await UniMessage(str(choice)).send()
|
||
await UniMessage(str(choice.message.content)).send(reply_to=True)
|
||
#requests_limit = response.headers.get('x-ratelimit-limit-requests')
|
||
#request_id = response.headers.get('x-request-id')
|
||
#remaining_requests = response.headers.get('x-ratelimit-remaining-requests')
|
||
#remaining_tokens = response.headers.get('x-ratelimit-remaining-tokens')
|
||
#await UniMessage(f""" 剩余token:{remaining_tokens}"""
|
||
# ).send()
|
||
except Exception as e:
|
||
await UniMessage(str(e)+suggest_solution(str(e))).send()
|
||
# await UniMessage(str(e.reason)).send()
|
||
traceback.print_exc()
|
||
return
|