import base64 import mimetypes import os import json from typing import Any, Optional import httpx import nonebot_plugin_localstore as store from nonebot.log import logger from zhDateTime import DateTime from azure.ai.inference.aio import ChatCompletionsClient from azure.ai.inference.models import SystemMessage from .config import config nickname_json = None # 记录昵称 praises_json = None # 记录夸赞名单 loaded_target_list = [] # 记录已恢复备份的上下文的列表 # noinspection LongLine chromium_headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36" } async def get_image_raw_and_type( url: str, timeout: int = 10 ) -> Optional[tuple[bytes, str]]: """ 获取图片的二进制数据 参数: url: str 图片链接 timeout: int 超时时间 秒 return: tuple[bytes, str]: 图片二进制数据, 图片MIME格式 """ async with httpx.AsyncClient() as client: response = await client.get(url, headers=chromium_headers, timeout=timeout) if response.status_code == 200: # 获取图片数据 content_type = response.headers.get("Content-Type") if not content_type: content_type = mimetypes.guess_type(url)[0] # image_format = content_type.split("/")[1] if content_type else "jpeg" return response.content, str(content_type) else: return None async def get_image_b64(url: str, timeout: int = 10) -> Optional[str]: """ 获取图片的base64编码 参数: url: 图片链接 timeout: 超时时间 秒 return: 图片base64编码 """ if data_type := await get_image_raw_and_type(url, timeout): # image_format = content_type.split("/")[1] if content_type else "jpeg" base64_image = base64.b64encode(data_type[0]).decode("utf-8") data_url = "data:{};base64,{}".format(data_type[1], base64_image) return data_url else: return None async def make_chat( client: ChatCompletionsClient, msg: list, model_name: str, tools: Optional[list] = None, ): """调用ai获取回复 参数: client: 用于与AI模型进行通信 msg: 消息内容 model_name: 指定AI模型名""" return await client.complete( messages=msg, model=model_name, tools=tools, temperature=config.marshoai_temperature, max_tokens=config.marshoai_max_tokens, top_p=config.marshoai_top_p, ) def get_praises(): global praises_json if praises_json is None: praises_file = store.get_plugin_data_file( "praises.json" ) # 夸赞名单文件使用localstore存储 if not os.path.exists(praises_file): init_data = { "like": [ { "name": "Asankilp", "advantages": "赋予了Marsho猫娘人格,使用vim与vscode为Marsho写了许多代码,使Marsho更加可爱", } ] } with open(praises_file, "w", encoding="utf-8") as f: json.dump(init_data, f, ensure_ascii=False, indent=4) with open(praises_file, "r", encoding="utf-8") as f: data = json.load(f) praises_json = data return praises_json async def refresh_praises_json(): global praises_json praises_file = store.get_plugin_data_file("praises.json") if not os.path.exists(praises_file): init_data = { "like": [ { "name": "Asankilp", "advantages": "赋予了Marsho猫娘人格,使用vim与vscode为Marsho写了许多代码,使Marsho更加可爱", } ] } with open(praises_file, "w", encoding="utf-8") as f: json.dump(init_data, f, ensure_ascii=False, indent=4) with open(praises_file, "r", encoding="utf-8") as f: data = json.load(f) praises_json = data def build_praises(): praises = get_praises() result = ["你喜欢以下几个人物,他们有各自的优点:"] for item in praises["like"]: result.append(f"名字:{item['name']},优点:{item['advantages']}") return "\n".join(result) async def save_context_to_json(name: str, context: Any, path: str): context_dir = store.get_plugin_data_dir() / path os.makedirs(context_dir, exist_ok=True) file_path = os.path.join(context_dir, f"{name}.json") with open(file_path, "w", encoding="utf-8") as json_file: json.dump(context, json_file, ensure_ascii=False, indent=4) async def load_context_from_json(name: str, path: str) -> list: """从指定路径加载历史记录""" context_dir = store.get_plugin_data_dir() / path os.makedirs(context_dir, exist_ok=True) file_path = os.path.join(context_dir, f"{name}.json") try: with open(file_path, "r", encoding="utf-8") as json_file: return json.load(json_file) except FileNotFoundError: return [] async def set_nickname(user_id: str, name: str): global nickname_json filename = store.get_plugin_data_file("nickname.json") if not os.path.exists(filename): data = {} else: with open(filename, "r", encoding="utf-8") as f: data = json.load(f) data[user_id] = name if name == "" and user_id in data: del data[user_id] with open(filename, "w", encoding="utf-8") as f: json.dump(data, f, ensure_ascii=False, indent=4) nickname_json = data # noinspection PyBroadException async def get_nicknames(): """获取nickname_json, 优先来源于全局变量""" global nickname_json if nickname_json is None: filename = store.get_plugin_data_file("nickname.json") try: with open(filename, "r", encoding="utf-8") as f: nickname_json = json.load(f) except Exception: nickname_json = {} return nickname_json async def refresh_nickname_json(): """强制刷新nickname_json, 刷新全局变量""" global nickname_json filename = store.get_plugin_data_file("nickname.json") # noinspection PyBroadException try: with open(filename, "r", encoding="utf-8") as f: nickname_json = json.load(f) except Exception: logger.error("Error loading nickname.json") def get_prompt(): """获取系统提示词""" prompts = "" prompts += config.marshoai_additional_prompt if config.marshoai_enable_praises: praises_prompt = build_praises() prompts += praises_prompt marsho_prompt = config.marshoai_prompt spell = SystemMessage(content=marsho_prompt + prompts).as_dict() return spell def suggest_solution(errinfo: str) -> str: # noinspection LongLine suggestions = { "content_filter": "消息已被内容过滤器过滤。请调整聊天内容后重试。", "RateLimitReached": "模型达到调用速率限制。请稍等一段时间或联系Bot管理员。", "tokens_limit_reached": "请求token达到上限。请重置上下文。", "content_length_limit": "请求体过大。请重置上下文。", "unauthorized": "访问token无效。请联系Bot管理员。", "invalid type: parameter messages.content is of type array but should be of type string.": "聊天请求体包含此模型不支持的数据类型。请重置上下文。", "At most 1 image(s) may be provided in one request.": "此模型只能在上下文中包含1张图片。如果此前的聊天已经发送过图片,请重置上下文。", } for key, suggestion in suggestions.items(): if key in errinfo: return f"\n{suggestion}" return "" async def get_backup_context(target_id: str, target_private: bool) -> list: """获取历史上下文""" global loaded_target_list if target_private: target_uid = f"private_{target_id}" else: target_uid = f"group_{target_id}" if target_uid not in loaded_target_list: loaded_target_list.append(target_uid) return await load_context_from_json( f"back_up_context_{target_uid}", "contexts/backup" ) return []