nonebot-plugin-marshoai/nonebot_plugin_marshoai/util.py

212 lines
7.5 KiB
Python
Raw Normal View History

import base64
import mimetypes
2024-09-17 20:20:31 +08:00
import os
2024-09-28 12:24:20 +08:00
import json
from typing import Any
2024-09-17 20:20:31 +08:00
import httpx
import nonebot_plugin_localstore as store
from datetime import datetime
from nonebot.log import logger
from zhDateTime import DateTime # type: ignore
from azure.ai.inference.aio import ChatCompletionsClient
from azure.ai.inference.models import SystemMessage
from .config import config
nickname_json = None # 记录昵称
praises_json = None # 记录夸赞名单
loaded_target_list = [] # 记录已恢复备份的上下文的列表
async def get_image_b64(url):
# noinspection LongLine
headers = {
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36"
}
2024-09-17 20:20:31 +08:00
async with httpx.AsyncClient() as client:
response = await client.get(url, headers=headers)
if response.status_code == 200:
# 获取图片数据
image_data = response.content
content_type = response.headers.get("Content-Type")
if not content_type:
content_type = mimetypes.guess_type(url)[0]
# image_format = content_type.split("/")[1] if content_type else "jpeg"
base64_image = base64.b64encode(image_data).decode("utf-8")
data_url = f"data:{content_type};base64,{base64_image}"
return data_url
else:
return None
async def make_chat(client: ChatCompletionsClient, msg: list, model_name: str, tools: list = None):
"""调用ai获取回复
参数:
client: 用于与AI模型进行通信
msg: 消息内容
model_name: 指定AI模型名"""
return await client.complete(
messages=msg,
model=model_name,
tools=tools,
temperature=config.marshoai_temperature,
max_tokens=config.marshoai_max_tokens,
top_p=config.marshoai_top_p,
)
2024-09-28 12:24:20 +08:00
def get_praises():
global praises_json
if praises_json is None:
praises_file = store.get_plugin_data_file("praises.json") # 夸赞名单文件使用localstore存储
if not os.path.exists(praises_file):
init_data = {
"like": [
{
"name": "Asankilp",
"advantages": "赋予了Marsho猫娘人格使用vim与vscode为Marsho写了许多代码使Marsho更加可爱",
}
]
}
with open(praises_file, "w", encoding="utf-8") as f:
json.dump(init_data, f, ensure_ascii=False, indent=4)
with open(praises_file, "r", encoding="utf-8") as f:
data = json.load(f)
praises_json = data
return praises_json
async def refresh_praises_json():
global praises_json
praises_file = store.get_plugin_data_file("praises.json")
if not os.path.exists(praises_file):
2024-09-28 12:24:20 +08:00
init_data = {
"like": [
{
"name": "Asankilp",
"advantages": "赋予了Marsho猫娘人格使用vim与vscode为Marsho写了许多代码使Marsho更加可爱",
}
]
}
with open(praises_file, "w", encoding="utf-8") as f:
json.dump(init_data, f, ensure_ascii=False, indent=4)
with open(praises_file, "r", encoding="utf-8") as f:
2024-09-28 12:24:20 +08:00
data = json.load(f)
praises_json = data
2024-09-28 12:24:20 +08:00
2024-09-28 12:24:20 +08:00
def build_praises():
praises = get_praises()
result = ["你喜欢以下几个人物,他们有各自的优点:"]
for item in praises["like"]:
result.append(f"名字:{item['name']},优点:{item['advantages']}")
return "\n".join(result)
async def save_context_to_json(name: str, context: Any, path: str):
context_dir = store.get_plugin_data_dir() / path
2024-10-03 15:16:32 +08:00
os.makedirs(context_dir, exist_ok=True)
file_path = os.path.join(context_dir, f"{name}.json")
with open(file_path, "w", encoding="utf-8") as json_file:
2024-10-03 15:16:32 +08:00
json.dump(context, json_file, ensure_ascii=False, indent=4)
async def load_context_from_json(name: str, path: str) -> list:
"""从指定路径加载历史记录"""
context_dir = store.get_plugin_data_dir() / path
2024-10-03 15:16:32 +08:00
os.makedirs(context_dir, exist_ok=True)
file_path = os.path.join(context_dir, f"{name}.json")
try:
with open(file_path, "r", encoding="utf-8") as json_file:
2024-10-03 15:16:32 +08:00
return json.load(json_file)
except FileNotFoundError:
return []
async def set_nickname(user_id: str, name: str):
global nickname_json
filename = store.get_plugin_data_file("nickname.json")
if not os.path.exists(filename):
data = {}
else:
with open(filename, "r", encoding="utf-8") as f:
data = json.load(f)
data[user_id] = name
if name == "" and user_id in data:
del data[user_id]
with open(filename, "w", encoding="utf-8") as f:
json.dump(data, f, ensure_ascii=False, indent=4)
nickname_json = data
# noinspection PyBroadException
async def get_nicknames():
"""获取nickname_json, 优先来源于全局变量"""
global nickname_json
if nickname_json is None:
filename = store.get_plugin_data_file("nickname.json")
try:
with open(filename, "r", encoding="utf-8") as f:
nickname_json = json.load(f)
except Exception:
nickname_json = {}
return nickname_json
2024-10-03 15:16:32 +08:00
async def refresh_nickname_json():
"""强制刷新nickname_json, 刷新全局变量"""
global nickname_json
filename = store.get_plugin_data_file("nickname.json")
# noinspection PyBroadException
try:
with open(filename, "r", encoding="utf-8") as f:
nickname_json = json.load(f)
except Exception:
logger.error("Error loading nickname.json")
def get_prompt():
"""获取系统提示词"""
prompts = ""
prompts += config.marshoai_additional_prompt
if config.marshoai_enable_praises:
praises_prompt = build_praises()
prompts += praises_prompt
marsho_prompt = config.marshoai_prompt
spell = SystemMessage(content=marsho_prompt + prompts).as_dict()
return spell
def suggest_solution(errinfo: str) -> str:
# noinspection LongLine
suggestions = {
"content_filter": "消息已被内容过滤器过滤。请调整聊天内容后重试。",
"RateLimitReached": "模型达到调用速率限制。请稍等一段时间或联系Bot管理员。",
"tokens_limit_reached": "请求token达到上限。请重置上下文。",
"content_length_limit": "请求体过大。请重置上下文。",
"unauthorized": "访问token无效。请联系Bot管理员。",
"invalid type: parameter messages.content is of type array but should be of type string.": "聊天请求体包含此模型不支持的数据类型。请重置上下文。",
"At most 1 image(s) may be provided in one request.": "此模型只能在上下文中包含1张图片。如果此前的聊天已经发送过图片请重置上下文。",
}
for key, suggestion in suggestions.items():
if key in errinfo:
return f"\n{suggestion}"
return ""
async def get_backup_context(target_id: str, target_private: bool) -> list:
"""获取历史上下文"""
global loaded_target_list
if target_private:
target_uid = f"private_{target_id}"
else:
target_uid = f"group_{target_id}"
if target_uid not in loaded_target_list:
loaded_target_list.append(target_uid)
return await load_context_from_json(f"back_up_context_{target_uid}", "contexts/backup")
return []