139 lines
5.6 KiB
Python
139 lines
5.6 KiB
Python
from nonebot.typing import T_State
|
||
from nonebot import on_command
|
||
from nonebot.adapters import Message
|
||
from nonebot.params import ArgPlainText, CommandArg
|
||
from nonebot.permission import SUPERUSER
|
||
from typing import Optional
|
||
#from .acgnapis import *
|
||
from nonebot_plugin_alconna import on_alconna
|
||
from nonebot_plugin_alconna.uniseg import UniMessage, Target, MsgTarget, UniMsg, Image
|
||
from arclet.alconna import Alconna, Args, AllParam, Arparma
|
||
from .util import *
|
||
import traceback
|
||
from azure.ai.inference.aio import ChatCompletionsClient
|
||
from azure.ai.inference.models import SystemMessage, UserMessage, TextContentItem, ImageContentItem, ImageUrl
|
||
from azure.core.credentials import AzureKeyCredential
|
||
from azure.core.exceptions import HttpResponseError
|
||
from .__init__ import __plugin_meta__
|
||
from PIL import Image
|
||
from .config import config
|
||
from .models import MarshoContext
|
||
changemdl = on_command("changemodel",permission=SUPERUSER)
|
||
resetmem = on_command("reset",permission=SUPERUSER)
|
||
setprompt_cmd = on_command("prompt",permission=SUPERUSER)
|
||
praises_cmd = on_command("praises",permission=SUPERUSER)
|
||
nekocmd = on_alconna(
|
||
Alconna(
|
||
"marsho",
|
||
Args["text?",AllParam],
|
||
),
|
||
aliases={"neko"}
|
||
)
|
||
model_name = "gpt-4o-mini"
|
||
context = MarshoContext()
|
||
context_limit = 15
|
||
context_count = 0
|
||
@praises_cmd.handle()
|
||
async def getpraises():
|
||
await UniMessage(build_praises()).send()
|
||
|
||
@setprompt_cmd.handle() #用不了了
|
||
async def setprompt(arg: Message = CommandArg()):
|
||
global spell, context
|
||
if prompt := arg.extract_plain_text():
|
||
spell = SystemMessage(content=prompt)
|
||
await setprompt_cmd.finish("已设置提示词")
|
||
else:
|
||
spell = SystemMessage(content="")
|
||
context = []
|
||
await setprompt_cmd.finish("已清除提示词")
|
||
|
||
|
||
@resetmem.handle()
|
||
async def reset():
|
||
global context_count
|
||
context.reset()
|
||
context_count = 0
|
||
await resetmem.finish("上下文已重置")
|
||
|
||
@changemdl.got("model",prompt="请输入模型名")
|
||
async def changemodel(model : str = ArgPlainText()):
|
||
global model_name
|
||
model_name = model
|
||
await changemdl.finish("已切换")
|
||
@nekocmd.handle()
|
||
async def neko(
|
||
message: UniMsg,
|
||
text = None
|
||
):
|
||
global context_limit, context_count
|
||
token = config.marshoai_token
|
||
endpoint = "https://models.inference.ai.azure.com"
|
||
#msg = await UniMessage.generate(message=message)
|
||
client = ChatCompletionsClient(
|
||
endpoint=endpoint,
|
||
credential=AzureKeyCredential(token),
|
||
)
|
||
if not text:
|
||
await UniMessage(
|
||
"""MarshoAI Alpha? by Asankilp
|
||
用法:
|
||
marsho <聊天内容>
|
||
与 Marsho 进行对话。当模型为gpt时,可以带上图片进行对话。
|
||
changemodel
|
||
切换 AI 模型。仅超级用户可用。
|
||
reset
|
||
重置上下文。仅超级用户可用。
|
||
注意事项:
|
||
当 Marsho 回复消息为None或以content_filter开头的错误信息时,表示该消息被内容过滤器过滤,请调整你的聊天内容确保其合规。
|
||
当回复以RateLimitReached开头的错误信息时,该 AI 模型的次数配额已用尽,请联系Bot管理员。
|
||
※本AI的回答"按原样"提供,不提供担保,不代表开发者任何立场。AI也会犯错,请仔细甄别回答的准确性。
|
||
当前使用的模型:"""+model_name).send()
|
||
return
|
||
if context_count >= context_limit:
|
||
await UniMessage("上下文数量达到阈值。已自动重置上下文。").send()
|
||
context.reset()
|
||
context_count = 0
|
||
# await UniMessage(str(text)).send()
|
||
try:
|
||
usermsg = [TextContentItem(text=str(text).replace("[image]",""))]
|
||
if model_name == "gpt-4o" or model_name == "gpt-4o-mini":
|
||
for i in message:
|
||
if i.type == "image":
|
||
imgurl = i.data["url"]
|
||
print(imgurl)
|
||
await download_file(str(imgurl))
|
||
picmsg = ImageContentItem(image_url=ImageUrl.load(
|
||
image_file="./azureaipic.png",
|
||
image_format=Image.open("azureaipic.png").format
|
||
)
|
||
)
|
||
usermsg.append(picmsg)
|
||
#await UniMessage(str(context+[UserMessage(content=usermsg)])).send()
|
||
else:
|
||
usermsg = str(text)
|
||
#await UniMessage('非gpt').send()
|
||
response = await client.complete(
|
||
messages=context.build()+[UserMessage(content=usermsg)],
|
||
model=model_name
|
||
)
|
||
#await UniMessage(str(response)).send()
|
||
choice = response.choices[0]
|
||
if choice["finish_reason"] == "stop":
|
||
context.append(UserMessage(content=usermsg))
|
||
context.append(choice.message)
|
||
context_count += 1
|
||
#await UniMessage(str(choice)).send()
|
||
await UniMessage(str(choice.message.content)).send(reply_to=True)
|
||
#requests_limit = response.headers.get('x-ratelimit-limit-requests')
|
||
#request_id = response.headers.get('x-request-id')
|
||
#remaining_requests = response.headers.get('x-ratelimit-remaining-requests')
|
||
#remaining_tokens = response.headers.get('x-ratelimit-remaining-tokens')
|
||
#await UniMessage(f""" 剩余token:{remaining_tokens}"""
|
||
# ).send()
|
||
except HttpResponseError as e:
|
||
await UniMessage(str(e)).send()
|
||
# await UniMessage(str(e.reason)).send()
|
||
traceback.print_exc()
|
||
return
|